1
|
Vermeulen RR, van Staden ADP, Ollewagen T, van Zyl LJ, Luo Y, van der Donk WA, Dicks LMT, Smith C, Trindade M. Initial Characterization of the Viridisins' Biological Properties. ACS OMEGA 2024; 9:31832-31841. [PMID: 39072090 PMCID: PMC11270710 DOI: 10.1021/acsomega.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Viridisin A1 and A2 were previously heterologously expressed, purified, and characterized as ribosomally produced and post-translationally modified lanthipeptides. Such lanthipeptide operons are surprisingly common in Gram-negative bacteria, although their expression seems to be predominantly cryptic under laboratory conditions. However, the bioactivity and biological role of most lanthipeptide operons originating from marine-associated Pseudomonadota, such asThalassomonas viridans XOM25T, have not been described. Therefore, marine-associated Gram-negative lanthipeptide operons represent an untapped resource for novel structures, biochemistries, and bioactivities. Here, the upscaled production of viridisin A1 and A2 was performed for (methyl)lanthionine stereochemistry characterization, antibacterial, antifungal, and larval zebrafish behavioral screening. While antimicrobial activity was not observed, the VirBC modification machinery was found to install both dl- and ll-lanthionine stereoisomers. The VdsA1 and VdsA2 peptides induced sedative and stimulatory effects in zebrafish larvae, respectively, which is a bioactivity not previously reported from lanthipeptides. When combined, VdsA1 and VdsA2 counteracted the sedative and stimulatory effects observed when used individually.
Collapse
Affiliation(s)
- Ross Rayne Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Anton Du Preez van Staden
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Tracey Ollewagen
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Leonardo Joaquim van Zyl
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Carine Smith
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Marla Trindade
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| |
Collapse
|
2
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Zhang ZJ, Wu C, Moreira R, Dorantes D, Pappas T, Sundararajan A, Lin H, Pamer EG, van der Donk WA. Activity of Gut-Derived Nisin-like Lantibiotics against Human Gut Pathogens and Commensals. ACS Chem Biol 2024; 19:357-369. [PMID: 38293740 PMCID: PMC10877564 DOI: 10.1021/acschembio.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Recent advances in sequencing techniques unveiled the vast potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) encoded in microbiomes. Class I lantibiotics such as nisin A, widely used as a food preservative, have been investigated for their efficacy in killing pathogens. However, the impact of nisin and nisin-like class I lantibiotics on commensal bacteria residing in the human gut remains unclear. Here, we report six gut-derived class I lantibiotics that are close homologues of nisin, four of which are novel. We applied an improved lantibiotic expression platform to produce and purify these lantibiotics for antimicrobial assays. We determined their minimal inhibitory concentration (MIC) against both Gram-positive human pathogens and gut commensals and profiled the lantibiotic resistance genes in these pathogens and commensals. Structure-activity relationship (SAR) studies with analogs revealed key regions and residues that impact their antimicrobial properties. Our characterization and SAR studies of nisin-like lantibiotics against both pathogens and human gut commensals could shed light on the future development of lantibiotic-based therapeutics and food preservatives.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Microbiology, University of Chicago, Chicago, Illinois 60637, United States
| | - Chunyu Wu
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Ryan Moreira
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Darian Dorantes
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Téa Pappas
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Anitha Sundararajan
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Huaiying Lin
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Eric G. Pamer
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Departments
of Medicine and Pathology, University of
Chicago, Chicago, Illinois 60637, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
6
|
Luo Y, Xu S, Frerk AM, van der Donk WA. Facile Method for Determining Lanthipeptide Stereochemistry. Anal Chem 2024; 96:1767-1773. [PMID: 38232355 PMCID: PMC10831782 DOI: 10.1021/acs.analchem.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Lanthipeptides make up a large group of natural products that belong to the ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain lanthionine and methyllanthionine bis-amino acids that have varying stereochemistry. The stereochemistry of new lanthipeptides is often not determined because current methods require equipment that is not standard in most laboratories. In this study, we developed a facile, efficient, and user-friendly method for detecting lanthipeptide stereochemistry, utilizing advanced Marfey's analysis with detection by liquid chromatography coupled with mass spectrometry (LC-MS). Under optimized conditions, 0.05 mg of peptide is sufficient to characterize the stereochemistry of five (methyl)lanthionines of different stereochemistry using a simple liquid chromatography setup, which is a much lower detection limit than current methods. In addition, we describe methods to readily access standards of the three different methyllanthionine stereoisomers and two different lanthionine stereoisomers that have been reported in known lanthipeptides. The developed workflow uses a commonly used nonchiral column system and offers a scalable platform to assist antimicrobial discovery. We illustrate its utility with an example of a lanthipeptide discovered by genome mining.
Collapse
Affiliation(s)
- Youran Luo
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Shuyun Xu
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Autumn M. Frerk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Goel N, Zaidi S, Khare SK. Whole genome sequencing and functional analysis of a novel biofilm-eradicating strain Nocardiopsis lucentensis EMB25. World J Microbiol Biotechnol 2023; 39:292. [PMID: 37653174 DOI: 10.1007/s11274-023-03738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
The process of biofilm formation is intricate and multifaceted, requiring the individual cells to secrete extracellular polymeric substances (EPS) that subsequently aggregate and adhere to various surfaces. The issue of biofilms is a significant concern for public health due to the increased resistance of microorganisms associated with biofilms to antimicrobial agents. The current study describes the whole genome and corresponding functions of a biofilm inhibiting and eradicating actinobacteria isolate identified as Nocardiopsis lucentensis EMB25. The N. lucentensis EMB25 has 6.5 Mbp genome with 71.62% GC content. The genome analysis by BLAST Ring Image Generator (BRIG) revealed it to be closely related to Nocardiopsis dassonvillei NOCA502F. Interestingly, based on orthologous functional groups reflected by average nucleotide identity (ANI) analysis, it was 81.48% similar to N. arvandica DSM4527. Also, it produces lanthipeptides and linear azole(in)e-containing peptides (LAPs) akin to N. arvandica. The secondary metabolite search revealed the presence of major gene clusters involved in terpene, ectoine, siderophores, Lanthipeptides, RiPP-like, and T1PKS biosynthesis. After 24 h of treatment, the cell-free extract effectively eradicates the pre-existing biofilm of P. aeruginosa PseA. Also, the isolated bacteria exhibited antibacterial activity against MRSA, Staphylococcus aureus and Bacillus subtilis bacteria. Overall, this finding offers valuable insights into the identification of BGCs, which contain enzymes that play a role in the biosynthesis of natural products. Specifically, it sheds light on the functional aspects of these BGCs in relation to N. lucentensis.
Collapse
Affiliation(s)
- Nikky Goel
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
9
|
Thibodeaux CJ. The conformationally dynamic structural biology of lanthipeptide biosynthesis. Curr Opin Struct Biol 2023; 81:102644. [PMID: 37352604 DOI: 10.1016/j.sbi.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/25/2023]
Abstract
Lanthipeptide synthetases are fascinating biosynthetic enzymes that install intramolecular thioether bridges into genetically encoded peptides, typically endowing the peptide with therapeutic properties. The factors that control the macrocyclic topology of lanthipeptides are numerous and remain difficult to predict and manipulate. The key challenge in this endeavor derives from the vast conformational space accessible to the disordered precursor lanthipeptide, which can be manipulated in subtle ways by interaction with the cognate synthetase. This review explores the unique strategies employed by each of the five phylogenetically divergent classes of lanthipeptide synthetase to manipulate and exploit the dynamic lanthipeptide conformational ensemble, collectively enabling these biosynthetic enzymes to guide peptide maturation along specific trajectories to products with distinct macrocyclic topology and biological activity.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- McGill University, Department of Chemistry, 801Sherbooke St. West, Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
10
|
Wang X, Wang Z, Dong Z, Yan Y, Zhang Y, Huo L. Deciphering the Biosynthesis of Novel Class I Lanthipeptides from Marine Pseudoalteromonas Reveals a Dehydratase PsfB with Dethiolation Activity. ACS Chem Biol 2023; 18:1218-1227. [PMID: 37162177 DOI: 10.1021/acschembio.3c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lanthipeptides are a representative class of RiPPs that possess characteristic lanthionine and/or methyllanthionine thioether cross-links. The biosynthetic potentials of marine-derived lanthipeptides remain largely unexplored. In this study, we characterized three novel lanthipeptides pseudorosin A-C by heterologous expression of a class I lanthipeptide biosynthetic gene cluster from marine Pseudoalteromonas flavipulchra S16. Interestingly, pseudorosin C contains a large loop spanning 18 amino acid residues, which is rare in lanthipeptides. Unexpectedly, the dehydratase PsfB could catalyze the dethiolation of specific Cys residues in all three core peptides, thereby generating dehydroalanines in the absence of LanC cyclase. To the best of our knowledge, we identified the first member of the LanB dehydratase family to perform glutamylation and subsequent elimination on Cys thiol groups, which likely represents a new bypass for class I lanthipeptide biosynthesis. Furthermore, we employed mutagenesis to determine the important motif of the core peptide for dethiolation activity. Moreover, sequence analysis revealed that PsfB exhibited a distinct phylogenetic distance from the characterized LanBs from Gram-positive bacteria. Our findings, therefore, pave the way for further genome mining of lanthipeptides, novel post-translational modification enzymes from marine Gram-negative bacteria, and bioengineering applications.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Zongjie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Zhiqi Dong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Yihai Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
11
|
Chaudhary S, Kishen S, Singh M, Jassal S, Pathania R, Bisht K, Sareen D. Phylogeny-guided genome mining of roseocin family lantibiotics to generate improved variants of roseocin. AMB Express 2023; 13:34. [PMID: 36940043 PMCID: PMC10027976 DOI: 10.1186/s13568-023-01536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/21/2023] Open
Abstract
Roseocin, the two-peptide lantibiotic from Streptomyces roseosporus, carries extensive intramolecular (methyl)lanthionine bridging in the peptides and exhibits synergistic antibacterial activity against clinically relevant Gram-positive pathogens. Both peptides have a conserved leader but a diverse core region. The biosynthesis of roseocin involves post-translational modification of the two precursor peptides by a single promiscuous lanthipeptide synthetase, RosM, to install an indispensable disulfide bond in the Rosα core along with four and six thioether rings in Rosα and Rosβ cores, respectively. RosM homologs in the phylum actinobacteria were identified here to reveal twelve other members of the roseocin family which diverged into three types of biosynthetic gene clusters (BGCs). Further, the evolutionary rate among the BGC variants and analysis of variability within the core peptide versus leader peptide revealed a phylum-dependent lanthipeptide evolution. Analysis of horizontal gene transfer revealed its role in the generation of core peptide diversity. The naturally occurring diverse congeners of roseocin peptides identified from the mined novel BGCs were carefully aligned to identify the conserved sites and the substitutions in the core peptide region. These selected sites in the Rosα peptide were mutated for permitted substitutions, expressed heterologously in E. coli, and post-translationally modified by RosM in vivo. Despite a limited number of generated variants, two variants, RosαL8F and RosαL8W exhibited significantly improved inhibitory activity in a species-dependent manner compared to the wild-type roseocin. Our study proves that a natural repository of evolved variants of roseocin is present in nature and the key variations can be used to generate improved variants.
Collapse
Affiliation(s)
- Sandeep Chaudhary
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Shweta Kishen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sunanda Jassal
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Reeva Pathania
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kalpana Bisht
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Lee H, Wu C, Desormeaux EK, Sarksian R, van der Donk WA. Improved production of class I lanthipeptides in Escherichia coli. Chem Sci 2023; 14:2537-2546. [PMID: 36908960 PMCID: PMC9993889 DOI: 10.1039/d2sc06597e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Lanthipeptides are ribosomally synthesised and post-translationally modified peptides containing lanthionine (Lan) and methyllanthionine (MeLan) residues that are formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a co-substrate to glutamylate Ser/Thr followed by glutamate elimination. Here we report a new system to heterologously express class I lanthipeptides in Escherichia coli through co-expression of the producing organism's glutamyl-tRNA synthetase (GluRS) and tRNAGlu pair in the vector pEVOL. In contrast to the results in the absence of the pEVOL system, we observed the production of fully-dehydrated peptides, including epilancin 15X, and peptides from the Bacteroidota Chryseobacterium and Runella. A second common obstacle to production of lanthipeptides in E. coli is the formation of glutathione adducts. LanC-like (LanCL) enzymes were previously reported to add glutathione to dehydroamino-acid-containing proteins in Eukarya. Herein, we demonstrate that the LanCL enzymes can remove GSH adducts from C-glutathionylated peptides with dl- or ll-lanthionine stereochemistry. These two advances will aid synthetic biology-driven genome mining efforts to discover new lanthipeptides.
Collapse
Affiliation(s)
- Hyunji Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- College of Pharmacy, Kyungsung University Busan 48434 Republic of Korea
| | - Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Raymond Sarksian
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
13
|
Kadjo AE, Eustáquio AS. Bacterial natural product discovery by heterologous expression. J Ind Microbiol Biotechnol 2023; 50:kuad044. [PMID: 38052428 PMCID: PMC10727000 DOI: 10.1093/jimb/kuad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Natural products have found important applications in the pharmaceutical and agricultural sectors. In bacteria, the genes that encode the biosynthesis of natural products are often colocalized in the genome, forming biosynthetic gene clusters. It has been predicted that only 3% of natural products encoded in bacterial genomes have been discovered thus far, in part because gene clusters may be poorly expressed under laboratory conditions. Heterologous expression can help convert bioinformatics predictions into products. However, challenges remain, such as gene cluster prioritization, cloning of the complete gene cluster, high level expression, product identification, and isolation of products in practical yields. Here we reviewed the literature from the past 5 years (January 2018 to June 2023) to identify studies that discovered natural products by heterologous expression. From the 50 studies identified, we present analyses of the rationale for gene cluster prioritization, cloning methods, biosynthetic class, source taxa, and host choice. Combined, the 50 studies led to the discovery of 63 new families of natural products, supporting heterologous expression as a promising way to access novel chemistry. However, the success rate of natural product detection varied from 11% to 32% based on four large-scale studies that were part of the reviewed literature. The low success rate makes it apparent that much remains to be improved. The potential reasons for failure and points to be considered to improve the chances of success are discussed. ONE-SENTENCE SUMMARY At least 63 new families of bacterial natural products were discovered using heterologous expression in the last 5 years, supporting heterologous expression as a promising way to access novel chemistry; however, the success rate is low (11-32%) making it apparent that much remains to be improved-we discuss the potential reasons for failure and points to be considered to improve the chances of success. BioRender was used to generate the graphical abstract figure.
Collapse
Affiliation(s)
- Adjo E Kadjo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
14
|
Sarksian R, Zhu L, van der Donk WA. syn-Elimination of glutamylated threonine in lanthipeptide biosynthesis. Chem Commun (Camb) 2023; 59:1165-1168. [PMID: 36625436 PMCID: PMC9890492 DOI: 10.1039/d2cc06345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methyllanthionine (MeLan) containing macrocycles are key structural features of lanthipeptides. They are formed typically by anti-elimination of L-Thr residues followed by cyclization of L-Cys residues onto the (Z)-dehydrobutyrine (Dhb) intermediates. In this report we demonstrate that the biosynthesis of lanthipeptides containing the D-allo-L-MeLan macrocycle such as the morphogenetic lanthipeptide SapT proceeds through (E)-Dhb intermediates formed by net syn-elimination of L-Thr.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-ChampaignUrbanaIL61822USA+1 217 244 5360
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-ChampaignUrbanaIL61822USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-ChampaignUrbanaIL61822USA+1 217 244 5360,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL61822USA
| |
Collapse
|
15
|
Janssen K, Krasenbrink J, Strangfeld S, Kroheck S, Josten M, Engeser M, Bierbaum G. Elucidation of the Bridging Pattern of the Lantibiotic Pseudomycoicidin. Chembiochem 2023; 24:e202200540. [PMID: 36399337 PMCID: PMC10107895 DOI: 10.1002/cbic.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Lantibiotics are post-translationally modified antibiotic peptides with lanthionine thioether bridges that represent potential alternatives to conventional antibiotics. The lantibiotic pseudomycoicidin is produced by Bacillus pseudomycoides DSM 12442 and is effective against many Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. While prior work demonstrated that pseudomycoicidin possesses one disulfide bridge and four thioether bridges, the ring topology has so far remained unclear. Here, we analyzed several pseudomycoicidin analogues that are affected in ring formation via MALDI-TOF-MS and tandem mass spectrometry with regard to their dehydration and fragmentation patterns, respectively. As a result, we propose a bridging pattern involving Thr8 and Cys13, Thr10 and Cys16, Ser18 and Cys21, and Ser20 and Cys26, thus, forming two double ring systems. Additionally, we localized the disulfide bridge to connect Cys3 and Cys7 and, therefore, fully elucidated the bridging pattern of pseudomycoicidin.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Julia Krasenbrink
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Present address: Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sarina Strangfeld
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Sarah Kroheck
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
16
|
Ongpipattanakul C, Liu S, Luo Y, Nair SK, van der Donk WA. The mechanism of thia-Michael addition catalyzed by LanC enzymes. Proc Natl Acad Sci U S A 2023; 120:e2217523120. [PMID: 36634136 PMCID: PMC9934072 DOI: 10.1073/pnas.2217523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.
Collapse
Affiliation(s)
| | - Shi Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Youran Luo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
17
|
Figueiredo G, Costa CP, Lourenço J, Caetano T, Rocha SM, Mendo S. Linking Pedobacter lusitanus NL19 volatile exometabolome with growth medium composition: what can we learn using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry? Anal Bioanal Chem 2023; 415:2613-2627. [PMID: 36631573 PMCID: PMC10149447 DOI: 10.1007/s00216-022-04505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
Microbial metabolomics allows understanding and to comprehensively analyse metabolites, and their related cellular and metabolic processes, that are produced and released to the extracellular environment under specific conditions. In that regard, the main objective of this research is to understand the impact of culture media changes in the metabolic profile of Pedobacter lusitanus NL19 (NL19) and Pedobacter himalayensis MTCC 6384 (MTCC6384) and respective influence on the production of biotechnologically relevant compounds. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry with time-of-flight analyser (GC × GC-ToFMS) was applied to comprehensively study the metabolites produced by NL19 and MTCC6384 both in tryptic soy broth 100% (TSB100) and tryptic soy broth with 25% casein peptone (PC25). A total of 320 metabolites were putatively identified, which belong to different chemical families: alcohols, aldehydes, esters, ethers, hydrocarbons, ketones, nitrogen compounds, sulphur compounds, monoterpenes, and sesquiterpenes. Metabolites that were statistically different from the control (sterile medium) were selected allowing for the construction of the metabolic profile of both strains. A set of 80 metabolites was tentatively associated to the metabolic pathways such as the metabolism of fatty acids, branched-chain aminoacids, phenylalanine, methionine, aromatic compounds, and monoterpene and sesquiterpene biosynthesis. This study allowed to better understand how slight changes of the culture media and thus the composition of nutrients impair the metabolic profile of bacteria, which may be further explored for metabolomics pipeline construction or biotechnological applications.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sílvia M Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Kaweewan I, Ijichi S, Nakagawa H, Kodani S. Heterologous production of new lanthipeptides hazakensins A and B using a cryptic gene cluster of the thermophilic bacterium Thermosporothrix hazakensis. World J Microbiol Biotechnol 2022; 39:30. [PMID: 36445498 DOI: 10.1007/s11274-022-03463-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
The thermophilic bacterium Thermosporothrix hazakensis belongs to a class of Ktedonobacteria in the phylum Chloroflexota. Lanthipeptides are a naturally occurring peptide group that contains antibacterial compounds such as nisin. To find a new lanthipeptide that is a possible candidate for an antibacterial reagent, we performed genome-mining of T. hazakensis and heterologous expression experiments. Based on genome-mining, the presence of a total of ten putative biosynthetic gene clusters for class I and class II lanthipeptides was indicated from the genome sequence of T. hazakensis. New lanthipeptides named hazakensins A and B were produced by heterologous expression of a class I lanthipeptide biosynthetic gene cluster in the expression host Escherichia coli. Co-expression of the biosynthetic gene cluster with tRNA-Glu and glutamyl-tRNA synthetase coding genes derived from T. hazakensis increased the production yield of both lanthipeptides by about 4-6 times. The chemical structures of hazakensins A and B including the bridging pattern of lanthionine/methyllanthionine rings were determined by NMR and MS experiments. Since production of hazakensins A and B was not observed in the native strain T. hazakensis, heterologous production was an effective method to obtain the lanthipeptides derived from the biosynthetic gene cluster. This is the first report of heterologous production of class I lanthipeptides originating from the filamentous green non-sulfur bacteria, to the best of our knowledge. The success of heterologous production of hazakensins may lead to the discovery and development of new lanthipeptides derived from the origins of bacteria in the phylum Chloroflexota.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Shinta Ijichi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, 305-8642, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan. .,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, 422-8529, Japan. .,College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
19
|
Vermeulen R, Van Staden ADP, van Zyl LJ, Dicks LMT, Trindade M. Unusual Class I Lanthipeptides from the Marine Bacteria Thalassomonas viridans. ACS Synth Biol 2022; 11:3608-3616. [PMID: 36323319 PMCID: PMC9680876 DOI: 10.1021/acssynbio.2c00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/06/2022]
Abstract
A novel class I lanthipeptide produced by the marine bacterium Thalassomonas viridans XOM25T was identified using genome mining. The putative lanthipeptides were heterologously coexpressed in Escherichia coli as GFP-prepeptide fusions along with the operon-encoded class I lanthipeptide modification machinery VdsCB. The core peptides, VdsA1 and VdsA2, were liberated from GFP using the NisP protease, purified, and analyzed by collision-induced tandem mass spectrometry. The operon-encoded cyclase and dehydratase, VdsCB, exhibited lanthipeptide synthetase activity via post-translational modification of the VdsA1 and VdsA2 core peptides. Modifications were directed by the conserved double glycine leader containing prepeptides of VdsA1 and VdsA2.
Collapse
Affiliation(s)
- Ross Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| | - Anton Du Preez Van Staden
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Division
of Clinical Pharmacology, Department of Medicine, Faculty of Medicine
and Health Sciences, Stellenbosch University, Parow 7505, South Africa
| | - Leonardo Joaquim van Zyl
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| | - Leon M. T. Dicks
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Marla Trindade
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| |
Collapse
|
20
|
Ayikpoe RS, Shi C, Battiste AJ, Eslami SM, Ramesh S, Simon MA, Bothwell IR, Lee H, Rice AJ, Ren H, Tian Q, Harris LA, Sarksian R, Zhu L, Frerk AM, Precord TW, van der Donk WA, Mitchell DA, Zhao H. A scalable platform to discover antimicrobials of ribosomal origin. Nat Commun 2022; 13:6135. [PMID: 36253467 PMCID: PMC9576775 DOI: 10.1038/s41467-022-33890-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new antimicrobials in the face of rising antibiotic resistance. Here, we report a scalable platform that combines high-throughput bioinformatics with automated biosynthetic gene cluster refactoring for rapid evaluation of uncharacterized gene clusters. As a proof of concept, 96 RiPP gene clusters that originate from diverse bacterial phyla involving 383 biosynthetic genes are refactored in a high-throughput manner using a biological foundry with a success rate of 86%. Heterologous expression of all successfully refactored gene clusters in Escherichia coli enables the discovery of 30 compounds covering six RiPP classes: lanthipeptides, lasso peptides, graspetides, glycocins, linear azol(in)e-containing peptides, and thioamitides. A subset of the discovered lanthipeptides exhibit antibiotic activity, with one class II lanthipeptide showing low µM activity against Klebsiella pneumoniae, an ESKAPE pathogen. Overall, this work provides a robust platform for rapidly discovering RiPPs.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Alexander J Battiste
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sangeetha Ramesh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Max A Simon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Ian R Bothwell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hyunji Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew J Rice
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hengqian Ren
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Qiqi Tian
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lonnie A Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Autumn M Frerk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Timothy W Precord
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, 20815, MD, USA.
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| | - Huimin Zhao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| |
Collapse
|
21
|
Liang H, Lopez IJ, Sánchez-Hidalgo M, Genilloud O, van der Donk WA. Mechanistic Studies on Dehydration in Class V Lanthipeptides. ACS Chem Biol 2022; 17:2519-2527. [PMID: 36044589 PMCID: PMC9486802 DOI: 10.1021/acschembio.2c00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides characterized by lanthionine (Lan) and/or methyllanthionine (MeLan) residues. Four classes of enzymes have been identified to install these structures in a substrate peptide. Recently, a novel class of lanthipeptides was discovered that lack genes for known class I-IV lanthionine synthases in their biosynthetic gene cluster (BGC). In this study, the dehydration of Ser/Thr during the biosynthesis of the class V lanthipeptide cacaoidin was reconstituted in vitro. The aminoglycoside phosphotransferase-like enzyme CaoK iteratively phosphorylates Ser/Thr residues on the precursor peptide CaoA, followed by phosphate elimination catalyzed by the HopA1 effector-like protein CaoY to achieve eight successive dehydrations. CaoY shows sequence similarity to the OspF family proteins and the lyase domains of class III/IV lanthionine synthetases, and mutagenesis studies identified residues that are critical for catalysis. An AlphaFold prediction of the structure of the dehydration enzyme complex engaged with its substrate suggests the importance of hydrophobic interactions between the CaoA leader peptide and CaoK in enzyme-substrate recognition. This model is supported by site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Haoqian Liang
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Isaiah J. Lopez
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Marina Sánchez-Hidalgo
- Fundación
MEDINA Centro de Excelencia en Investigación de Medicamentos
Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico
de Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación
MEDINA Centro de Excelencia en Investigación de Medicamentos
Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico
de Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States,Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana—Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States,
| |
Collapse
|
22
|
Abstract
The three-dimensional structure of natural products is critical for their biological activities and, as such, enzymes have evolved that specifically generate active stereoisomers. Lanthipeptides are post-translationally modified peptidic natural products that contain macrocyclic thioethers featuring lanthionine (Lan) and/or methyllanthionine (MeLan) residues with defined stereochemistry. In this report, we compare two class I lanthipeptide biosynthetic gene clusters (BGCs), coi and olv, that represent two families of lanthipeptide gene clusters found in Actinobacteria. The precursor peptides and BGCs are quite similar with genes encoding a dehydratase, cyclase, and methyltransferase (MT). We illustrate that the precursor peptide CoiA1 is converted by these enzymes into a polymacrocyclic product, mCoiA1, that contains an analogous ring pattern to the previously characterized post-translationally modified OlvA peptide (mOlvA). However, a clear distinction between the two BGCs is an additional Thr-glutamyl lyase (GL) domain that is fused to the MT, CoiSA, which results in divergence of the product stereochemistry for the coi BGC. Two out of three MeLan rings of mCoiA1 contain different stereochemistry than the corresponding residues in mOlvA, with the most notable difference being a rare d-allo-l-MeLan residue, the formation of which is guided by CoiSA. This study illustrates how nature utilizes a distinct GL to control natural product stereochemistry in lanthipeptide biosynthesis.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States,Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States,. Tel: 217 244 5360
| |
Collapse
|
23
|
Pei ZF, Zhu L, Sarksian R, van der Donk WA, Nair SK. Class V Lanthipeptide Cyclase Directs the Biosynthesis of a Stapled Peptide Natural Product. J Am Chem Soc 2022; 144:17549-17557. [PMID: 36107785 PMCID: PMC9621591 DOI: 10.1021/jacs.2c06808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lanthipeptides are a class of cyclic peptides characterized by the presence of one or more lanthionine (Lan) or methyllanthionine (MeLan) thioether rings. These cross-links are produced by α,β-unsaturation of Ser or Thr residues in peptide substrates by dehydration, followed by a Michael-type conjugate addition of Cys residues onto the dehydroamino acids. Lanthipeptides may be broadly classified into at least five different classes, and the biosynthesis of classes I-IV lanthipeptides requires catalysis by LanC cyclases that control both the site-specificity and the stereochemistry of the conjugate addition. In contrast, there are no current examples of LanCs that occur in class V biosynthetic clusters, despite the presence of lanthionine rings in these compounds. In this work, bioinformatics-guided co-occurrence analysis identifies more than 240 putative class V lanthipeptide clusters that contain a LanC cyclase. Reconstitution studies demonstrate that the cyclase-catalyzed product is notably distinct from the product formed spontaneously. Stereochemical analysis shows that the cyclase diverts the final product to a configuration that is distinct from one that is energetically favored. Structural characterization of the final product by multi-dimensional NMR spectroscopy reveals that it forms a helical stapled peptide. Mutational analysis identified a plausible order for cyclization and suggests that enzymatic rerouting to the final structure is largely directed by the construction of the first lanthionine ring. These studies show that lanthipeptide cyclases are needed for the biosynthesis of some constrained peptides, the formations of which would otherwise be energetically unfavored.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Abstract
The past decade has seen impressive advances in understanding the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs). One of the most common modifications found in these natural products is macrocyclization, a strategy also used by medicinal chemists to improve metabolic stability and target affinity and specificity. Another tool of the peptide chemist, modification of the amides in a peptide backbone, has also been observed in RiPPs. This review discusses the molecular mechanisms of biosynthesis of a subset of macrocyclic RiPP families, chosen because of the unusual biochemistry involved: the five classes of lanthipeptides (thioether cyclization by Michael-type addition), sactipeptides and ranthipeptides (thioether cyclization by radical chemistry), thiopeptides (cyclization by [4+2] cycloaddition), and streptide (cyclization by radical C-C bond formation). In addition, the mechanisms of backbone amide methylation, backbone epimerization, and backbone thioamide formation are discussed, as well as an unusual route to small molecules by posttranslational modification.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
25
|
Han Y, Wang X, Zhang Y, Huo L. Discovery and Characterization of Marinsedin, a New Class II Lanthipeptide Derived from Marine Bacterium Marinicella sediminis F2 T. ACS Chem Biol 2022; 17:785-790. [PMID: 35293716 DOI: 10.1021/acschembio.2c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial natural products provide a large number of drug leads. It is believed that abundant unexploited marine microorganisms also exhibit great potential for discovering compounds with novel chemical scaffolds and bioactivities. Lanthipeptides are a group of ribosomally synthesized and post-translationally modified peptides exhibiting a variety of biological functionalities. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and methyllanthionine. However, marine-derived lanthipeptides remain underexplored. Here we identified, heterologously expressed, and structurally characterized the unprecedented class II lanthipeptide marinsedin from the rare marine bacterium Marinicella sediminis F2T. Marinsedin consists of 19 amino acids and contains a rare 2-oxobutyryl group blocking the N-terminus of the peptide chain and two overlapping intramolecular thioether rings including an unusual 12-membered macro-thioether ring. Furthermore, we also evaluated the biological activity of marinsedin, demonstrating that it exhibits moderate cytotoxicity against HeLa cells and weak cytotoxicity against HCT-116 cell lines.
Collapse
Affiliation(s)
- Yu Han
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaotong Wang
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liujie Huo
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P.R.China
| |
Collapse
|
26
|
Sarksian R, Hegemann JD, Simon MA, Acedo JZ, van der Donk WA. Unexpected Methyllanthionine Stereochemistry in the Morphogenetic Lanthipeptide SapT. J Am Chem Soc 2022; 144:6373-6382. [PMID: 35352944 PMCID: PMC9011353 DOI: 10.1021/jacs.2c00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Lanthipeptides are
polycyclic peptides characterized by the presence
of lanthionine (Lan) and/or methyllanthionine (MeLan). They are members
of the ribosomally synthesized and post-translationally modified peptides (RiPPs). The stereochemical
configuration of (Me)Lan cross-links is important for the bioactivity
of lanthipeptides. To date, MeLan residues in characterized lanthipeptides
have either the 2S,3S or 2R,3R stereochemistry. Herein, we reconstituted
in Escherichia coli the biosynthetic pathway toward
SapT, a class I lanthipeptide that exhibits morphogenetic activity.
Through the synthesis of standards, the heterologously produced peptide
was shown to possess three MeLan residues with the 2S,3R stereochemistry (d-allo-l-MeLan), the first time such stereochemistry has been
observed in a lanthipeptide. Bioinformatic analysis of the biosynthetic
enzymes suggests this stereochemistry may also be present in other
lanthipeptides. Analysis of another gene cluster in Streptomyces
coelicolor that is widespread in actinobacteria confirmed
another example of d-allo-l-MeLan
and verified the bioinformatic prediction. We propose a mechanism
for the origin of the unexpected stereochemistry and provide support
using site-directed mutagenesis.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Max A Simon
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States.,Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| |
Collapse
|
27
|
Brinkmann S, Spohn MS, Schäberle TF. Bioactive natural products from Bacteroidetes. Nat Prod Rep 2022; 39:1045-1065. [PMID: 35315462 DOI: 10.1039/d1np00072a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Covering: up to end of January 2022Bacteria representing the phylum Bacteroidetes produce a diverse range of natural products, including polyketides, peptides and lactams. Here, we discuss unique aspects of the bioactive compounds discovered thus far, and the corresponding biosynthetic pathways if known, providing a comprehensive overview of the Bacteroidetes as a natural product reservoir.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Marius S Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, 35392 Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
28
|
Thetsana C, Ijichi S, Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from a marine proteobacterium Thalassomonas actiniarum affords new lanthipeptides thalassomonasins A and B. J Appl Microbiol 2022; 132:3629-3639. [PMID: 35157343 DOI: 10.1111/jam.15491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to utilize a cryptic biosynthetic gene cluster of a marine proteobacterium Thalassomonas actiniarum for production of new lanthipeptides by heterologous expression system. METHODS AND RESULTS Based on genome-mining, a new biosynthetic gene cluster of class I lanthipeptide was found in the genome sequence of a marine proteobacterium Thalassomonas actiniarum. Molecular cloning was performed to construct expression vector derived from commercial available plasmid pET-41a(+). Heterologous production of new lanthipeptides named thalassomonasins A and B was performed using the host Escherichia coli BL21(DE3) harboring the expression vector. The structure of thalassomonasin A was determined by interpretation of NMR and MS data. As a result, thalassomonasin A was determined to be a lanthipeptide with three units of lanthionine. The bridging pattern of the lanthionine rings in thalassomonasin A was determined by interpretation of NOESY data. The structure of thalassomonasin B was proposed by MS/MS experiment. CONCLUSIONS We succeeded in heterologous production of new class I lanthipeptides using a biosynthetic gene cluster of a marine proteobacterium Thalassomonas actiniarum. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report of heterologous production of lanthipeptides derived from proteobacterial origin. There are many cryptic biosynthetic gene clusters of this class of lanthipeptides in proteobacterial genomes. This study may lead to production of new lanthipeptides by utilizing the biosynthetic gene clusters.
Collapse
Affiliation(s)
- Chanaphat Thetsana
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Shinta Ijichi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Research center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, Japan.,College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|