1
|
Singh AK, Antonenko A, Kocyła A, Krężel A. An efficient and easily obtainable butelase variant for chemoenzymatic ligation and modification of peptides and proteins. Microb Cell Fact 2024; 23:325. [PMID: 39614317 DOI: 10.1186/s12934-024-02598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
The expanding field of site-specific ligation of proteins and peptides has catalyzed the development of novel methods that enhance molecular modification. Among these methods, enzymatic strategies have emerged as dominant due to their specificity and efficiency in modifying proteins under mild conditions. Asparaginyl endopeptidase is a group of cyclotide-producing cysteine proteases from plants. These plant cysteine proteases, known for their specificity, effectively recognize the tripeptide motif (Asx-Xaa-Yaa) and cleave at the C-terminal side of Asx residues, forming acyl-enzyme intermediates that facilitate transpeptidation. Butelase 1 stands out as the most efficient AEP for protein engineering, yet challenges in its expression and purification limit its accessibility for widespread research and industrial use. To address these challenges, we engineered a new, catalytically efficient variant of Butelase 1, Butelase AY, by mutating the gatekeeping residues Val237Ala and Thr238Tyr within the LAD-1 region. These modifications significantly enhanced the stability and yield of Butelase AY, allowing for successful application in various peptide and protein engineering tasks. Butelase AY was tested on the peptide GLGKY, the globular protein GFP, and the intrinsically disordered protein α-synuclein, effectively labeling them with a fluorescent probe. Notably, Butelase AY maintained its efficiency with substrates containing unnatural amino acids, making it a promising candidate for biorthogonal applications. Importantly, the mutations did not compromise the enzyme's specificity, as it continued to process model peptides and native protein substrates with N-term NHV recognition motifs effectively. In conclusion, Butelase AY presents a novel recombinant tool for diverse protein labeling and modifications, particularly in biorthogonal strategies. This innovation has the potential to expand applications in biotechnology and therapeutic development, ultimately revolutionizing protein engineering and its utility in synthetic biology.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
| | - Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
| |
Collapse
|
2
|
Jajosky RP, Zerra PE, Chonat S, Stowell SR, Arthur CM. Harnessing the potential of red blood cells in immunotherapy. Hum Immunol 2024; 85:111084. [PMID: 39255557 DOI: 10.1016/j.humimm.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Red blood cell (RBC) transfusion represents one of the earliest and most widespread forms of cellular therapy. While the primary purpose of RBC transfusions is to enhance the oxygen-carrying capacity of the recipient, RBCs also possess unique properties that make them attractive vehicles for inducing antigen-specific immune tolerance. Preclinical studies have demonstrated that RBC transfusion alone, in the absence of inflammatory stimuli, often fails to elicit detectable alloantibody formation against model RBC antigens. Several studies also suggest that RBC transfusion without inflammation may not only fail to generate a detectable alloantibody response but can also induce a state of antigen-specific non-responsiveness, a phenomenon potentially influenced by the density of the corresponding RBC alloantigen. The unique properties of RBCs, including their inability to divide and their stable surface antigen expression, make them attractive platforms for displaying exogenous antigens with the goal of leveraging their ability to induce antigen-specific non-responsiveness. This could facilitate antigen presentation to the host's immune system without triggering innate immune activation, potentially enabling the induction of antigen-specific tolerance for therapeutic applications in autoimmune disorders, preventing immune responses against protein therapeutics, or reducing alloreactivity in the setting of transfusion and transplantation.
Collapse
Affiliation(s)
- Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2024:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Rehm FBH, Tyler TJ, Zhou Y, Huang YH, Wang CK, Lawrence N, Craik DJ, Durek T. Repurposing a plant peptide cyclase for targeted lysine acylation. Nat Chem 2024; 16:1481-1489. [PMID: 38789555 PMCID: PMC11374674 DOI: 10.1038/s41557-024-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Transpeptidases are powerful tools for protein engineering but are largely restricted to acting at protein backbone termini. Alternative enzymatic approaches for internal protein labelling require bulky recognition motifs or non-proteinogenic reaction partners, potentially restricting which proteins can be modified or the types of modification that can be installed. Here we report a strategy for labelling lysine side chain ε-amines by repurposing an engineered asparaginyl ligase, which naturally catalyses peptide head-to-tail cyclization, for versatile isopeptide ligations that are compatible with peptidic substrates. We find that internal lysines with an adjacent leucine residue mimic the conventional N-terminal glycine-leucine substrate. This dipeptide motif enables efficient intra- or intermolecular ligation through internal lysine side chains, minimally leaving an asparagine C-terminally linked to the lysine side chain via an isopeptide bond. The versatility of this approach is demonstrated by the chemoenzymatic synthesis of peptides with non-native C terminus-to-side chain topology and the conjugation of chemically modified peptides to recombinant proteins.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tristan J Tyler
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yan Zhou
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Misra R, Sanjana Sharath N. Red blood cells based nanotheranostics: A smart biomimetic approach for fighting against cancer. Int J Pharm 2024; 661:124401. [PMID: 38986966 DOI: 10.1016/j.ijpharm.2024.124401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The technique of engineering drug delivery vehicles continues to develop, which bring enhancements in working more efficiently and minimizing side effects to make it more effective and safer. The intense capability of therapeutic agents to remain undamaged in a harsh extracellular environment is helpful to the success of drug development efforts. With this in mind, alterations of biopharmaceuticals with enhanced stability and decreased immunogenicity have been an increasingly active focus of such efforts. Red blood cells (RBCs), also known as erythrocytes have undergone extensive scrutiny as potential vehicles for drug delivery due to their remarkable attributes over the years of research. These include intrinsic biocompatibility, minimal immunogenicity, flexibility, and prolonged systemic circulation. Throughout the course of investigation, a diverse array of drug delivery platforms based on RBCs has emerged. These encompass genetically engineered RBCs, non-genetically modified RBCs, and RBC membrane-coated nanoparticles, each devised to cater to a range of biomedical objectives. Given their prevalence in the circulatory system, RBCs have gained significant attention for their potential to serve as biomimetic coatings for artificial nanocarriers. By virtue of their surface emulation capabilities and customizable core materials, nanocarriers mimicking these RBCs, hold considerable promise across a spectrum of applications, spanning drug delivery, imaging, phototherapy, immunomodulation, sensing, and detection. These multifaceted functionalities underscore the considerable therapeutic and diagnostic potential across various diseases. Our proposed review provides the synthesis of recent strides in the theranostic utilization of erythrocytes in the context of cancer. It also delves into the principal challenges and prospects intrinsic to this realm of research. The focal point of this review pertains to accentuating the significance of erythrocyte-based theranostic systems in combating cancer. Furthermore, it precisely records the latest and the most specific methodologies for tailoring the attributes of these biomimetic nanoscale formulations, attenuating various discoveries for the treatment and management of cancer.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain (Deemed-to-be University), JC Road, Bengaluru 560027, Karnataka, India.
| | - Naomi Sanjana Sharath
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain (Deemed-to-be University), JC Road, Bengaluru 560027, Karnataka, India
| |
Collapse
|
6
|
Wang XB, Zhang CH, Zhang T, Li HZ, Liu YL, Xu ZG, Lei G, Cai CJ, Guo ZY. An efficient peptide ligase engineered from a bamboo asparaginyl endopeptidase. FEBS J 2024; 291:2918-2936. [PMID: 38525648 DOI: 10.1111/febs.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
In recent years, a few asparaginyl endopeptidases (AEPs) from certain higher plants have been identified as efficient peptide ligases with wide applications in protein labeling and cyclic peptide synthesis. Recently, we developed a NanoLuc Binary Technology (NanoBiT)-based peptide ligase activity assay to identify more AEP-type peptide ligases. Herein, we screened 61 bamboo species from 16 genera using this assay and detected AEP-type peptide ligase activity in the crude extract of all tested bamboo leaves. From a popular bamboo species, Bambusa multiplex, we identified a full-length AEP-type peptide ligase candidate (BmAEP1) via transcriptomic sequencing. After its zymogen was overexpressed in Escherichia coli and self-activated in vitro, BmAEP1 displayed high peptide ligase activity, but with considerable hydrolytic activity. After site-directed mutagenesis of its ligase activity determinants, the mutant zymogen of [G238V]BmAEP1 was normally overexpressed in E. coli, but failed to activate itself. To resolve this problem, we developed a novel protease-assisted activation approach in which trypsin was used to cleave the mutant zymogen and was then conveniently removed via ion-exchange chromatography. After the noncovalently bound cap domain was dissociated from the catalytic core domain under acidic conditions, the recombinant [G238V]BmAEP1 displayed high peptide ligase activity with much lower hydrolytic activity and could efficiently catalyze inter-molecular protein ligation and intramolecular peptide cyclization. Thus, the engineered bamboo-derived peptide ligase represents a novel tool for protein labeling and cyclic peptide synthesis.
Collapse
Affiliation(s)
- Xin-Bo Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong-Hui Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Teng Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gang Lei
- Sanya Research Base of International Centre for Bamboo and Rattan, China
| | - Chun-Ju Cai
- Sanya Research Base of International Centre for Bamboo and Rattan, China
- International Center for Bamboo and Rattan, State Forestry and Grassland Administration Key Laboratory of Bamboo and Rattan, Beijing, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Arnott ZLP, Morgan HE, Hollingsworth K, Stevenson CME, Collins LJ, Tamasanu A, Machin DC, Dolan JP, Kamiński TP, Wildsmith GC, Williamson DJ, Pickles IB, Warriner SL, Turnbull WB, Webb ME. Quantitative N- or C-Terminal Labelling of Proteins with Unactivated Peptides by Use of Sortases and a d-Aminopeptidase. Angew Chem Int Ed Engl 2024; 63:e202310862. [PMID: 38072831 DOI: 10.1002/anie.202310862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 01/13/2024]
Abstract
Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.
Collapse
Affiliation(s)
- Zoe L P Arnott
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present address: Centre for Process Innovation, Central Park, The Nigel Perry Building, 1 Union St, Darlington, DL1 1GL, United Kingdom
| | - Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: Ashfield MedComms, City Tower, Piccadilly Plaza, Manchester, M1 4BT, United Kingdom
| | - Kristian Hollingsworth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Charlotte M E Stevenson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Lawrence J Collins
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Alexandra Tamasanu
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Darren C Machin
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jonathan P Dolan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: School of Chemical and Physical Sciences & Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Tomasz P Kamiński
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Gemma C Wildsmith
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Daniel J Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: Iksuda Therapeutics, The Biosphere, Draymans Way, Newcastle upon Tyne, NE4 5BX, United Kingdom
| | - Isabelle B Pickles
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: York Structural Biology Laboratory, Department of Biology, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Stuart L Warriner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Tang TM, Mason JM. Intracellular Application of an Asparaginyl Endopeptidase for Producing Recombinant Head-to-Tail Cyclic Proteins. JACS AU 2023; 3:3290-3296. [PMID: 38155637 PMCID: PMC10751764 DOI: 10.1021/jacsau.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Peptide backbone cyclization is commonly observed in nature and is increasingly applied to proteins and peptides to improve thermal and chemical stability and resistance to proteolytic enzymes and enhance biological activity. However, chemical synthesis of head-to-tail cyclic peptides and proteins is challenging, is often low yielding, and employs toxic and unsustainable reagents. Plant derived asparaginyl endopeptidases such as OaAEP1 have been employed to catalyze the head-to-tail cyclization of peptides in vitro, offering a safer and more sustainable alternative to chemical methods. However, while asparaginyl endopeptidases have been used in vitro and in native and transgenic plant species, they have never been used to generate recombinant cyclic proteins in live recombinant organisms outside of plants. Using dihydrofolate reductase as a proof of concept, we show that a truncated OaAEP1 variant C247A is functional in the Escherichia coli physiological environment and can therefore be coexpressed with a substrate protein to enable concomitant in situ cyclization. The bacterial system is ideal for cyclic protein production owing to the fast growth rate, durability, ease of use, and low cost. This streamlines cyclic protein production via a biocatalytic process with fast kinetics and minimal ligation scarring, while negating the need to purify the enzyme, substrate, and reaction mixtures individually. The resulting cyclic protein was characterized in vitro, demonstrating enhanced thermal stability compared to the corresponding linear protein without impacting enzyme activity. We anticipate this convenient method for generating cyclic peptides will have broad utility in a range of biochemical and chemical applications.
Collapse
Affiliation(s)
- T. M.
Simon Tang
- Department
of Life Sciences, University of Bath, Claverton Down, Bath, North Somerset BA2
7AY, U.K.
| | - Jody M. Mason
- Department
of Life Sciences, University of Bath, Claverton Down, Bath, North Somerset BA2
7AY, U.K.
| |
Collapse
|
9
|
Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Delivery Systems Based on Red Blood Cells and Their Membrane-Derived Nanoparticles. ACS NANO 2023; 17:5187-5210. [PMID: 36896898 DOI: 10.1021/acsnano.2c11965] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Red blood cells (RBCs) and RBC membrane-derived nanoparticles have been historically developed as bioinspired drug delivery systems to combat the issues of premature clearance, toxicity, and immunogenicity of synthetic nanocarriers. RBC-based delivery systems possess characteristics including biocompatibility, biodegradability, and long circulation time, which make them suited for systemic administration. Therefore, they have been employed in designing optimal drug formulations in various preclinical models and clinical trials to treat a wide range of diseases. In this review, we provide an overview of the biology, synthesis, and characterization of drug delivery systems based on RBCs and their membrane including whole RBCs, RBC membrane-camouflaged nanoparticles, RBC-derived extracellular vesicles, and RBC hitchhiking. We also highlight conventional and latest engineering strategies, along with various therapeutic modalities, for enhanced precision and effectiveness of drug delivery. Additionally, we focus on the current state of RBC-based therapeutic applications and their clinical translation as drug carriers, as well as discussing opportunities and challenges associated with these systems.
Collapse
Affiliation(s)
- Phuong Hoang Diem Nguyen
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Minh T N Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
10
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
11
|
Ma Q, He B, Tang G, Xie R, Zheng P. Enzymatic Protein Immobilization on Amino-Functionalized Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010379. [PMID: 36615576 PMCID: PMC9822503 DOI: 10.3390/molecules28010379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
The immobilization of proteins on nanoparticles has received much attention in recent years. Among different approaches, enzymatic protein immobilization shows unique advantages because of its site-specific connection. OaAEP1 is a recently engineered peptide ligase which can specifically recognize an N-terminal GL residue (NH2-Gly-Leu) and a C-terminal NGL amino acid residue (Asn-Gly-Leu-COOH) and ligates them efficiently. Herein, we report OaAEP1-mediated protein immobilization on synthetic magnetic nanoparticles. Our work showed that OaAEP1 could mediate C-terminal site-specific protein immobilization on the amino-functionalized Fe3O4 nanoparticles. Our work demonstrates a new method for site-specific protein immobilization on nanoparticles.
Collapse
|
12
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
13
|
Ding X, Wang Z, Zheng B, Shi S, Deng Y, Yu H, Zheng P. One-step asparaginyl endopeptidase ( OaAEP1)-based protein immobilization for single-molecule force spectroscopy. RSC Chem Biol 2022; 3:1276-1281. [PMID: 36320890 PMCID: PMC9533667 DOI: 10.1039/d2cb00135g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
14
|
Maza J, García-Almedina DM, Boike LE, Hamlish NX, Nomura DK, Francis MB. Tyrosinase-Mediated Synthesis of Nanobody-Cell Conjugates. ACS CENTRAL SCIENCE 2022; 8:955-962. [PMID: 35912347 PMCID: PMC9335918 DOI: 10.1021/acscentsci.1c01265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A convenient enzymatic strategy is reported for the modification of cell surfaces. Using a tyrosinase enzyme isolated from Agaricus bisporus, unique tyrosine residues introduced at the C-termini of nanobodies can be site-selectively oxidized to reactive o-quinones. These reactive intermediates undergo rapid modification with nucleophilic thiol, amine, and imidazole residues present on cell surfaces, producing novel nanobody-cell conjugates that display targeted antigen binding. We extend this approach toward the synthesis of nanobody-NK cell conjugates for targeted immunotherapy applications. The resulting NK cell conjugates exhibit targeted cell binding and elicit targeted cell death.
Collapse
Affiliation(s)
- Johnathan
C. Maza
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Lydia E. Boike
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Novartis-Berkeley
Center for Proteomics and Chemistry Technologies, Cambridge, Massachusetts 02139, United States
| | - Noah X. Hamlish
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Novartis-Berkeley
Center for Proteomics and Chemistry Technologies, Cambridge, Massachusetts 02139, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratories, Berkeley, California 94720,United States
| |
Collapse
|
15
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
16
|
Rehm FBH, Tyler TJ, de Veer SJ, Craik DJ, Durek T. Enzymatic C-to-C Protein Ligation. Angew Chem Int Ed Engl 2022; 61:e202116672. [PMID: 35018698 PMCID: PMC9303898 DOI: 10.1002/anie.202116672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 01/11/2023]
Abstract
Transpeptidase-catalyzed protein and peptide modifications have been widely utilized for generating conjugates of interest for biological investigation or therapeutic applications. However, all known transpeptidases are constrained to ligating in the N-to-C orientation, limiting the scope of attainable products. Here, we report that an engineered asparaginyl ligase accepts diverse incoming nucleophile substrate mimetics, particularly when a means of selectively quenching the reactivity of byproducts released from the recognition sequence is employed. In addition to directly catalyzing formation of l-/d- or α-/β-amino acid junctions, we find C-terminal Leu-ethylenediamine (Leu-Eda) motifs to be bona fide mimetics of native N-terminal Gly-Leu sequences. Appending a C-terminal Leu-Eda to synthetic peptides or, via an intein-splicing approach, to recombinant proteins enables direct transpeptidase-catalyzed C-to-C ligations. This work significantly expands the synthetic scope of enzyme-catalyzed protein transpeptidation reactions.
Collapse
Affiliation(s)
- Fabian B. H. Rehm
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - Tristan J. Tyler
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - Simon J. de Veer
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - David J. Craik
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - Thomas Durek
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| |
Collapse
|
17
|
Rehm FBH, Tyler TJ, de Veer SJ, Craik DJ, Durek T. Enzymatic C‐to‐C Protein Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabian B. H. Rehm
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - Tristan J. Tyler
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - Simon J. de Veer
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - David J. Craik
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - Thomas Durek
- The University of Queensland Institute for Molecular Bioscience 306 Carmody RdLvl 7 North 4072 Brisbane AUSTRALIA
| |
Collapse
|
18
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
19
|
Chen Y, Zhang D, Zhang X, Wang Z, Liu CF, Tam JP. Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from Viola canadensis. Front Chem 2021; 9:768854. [PMID: 34746098 PMCID: PMC8568951 DOI: 10.3389/fchem.2021.768854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) or legumains are Asn/Asp (Asx)-specific proteases that break peptide bonds, but also function as peptide asparaginyl ligases (PALs) that make peptide bonds. This ligase activity can be used for site-specific protein modifications in biochemical and biotechnological applications. Although AEPs are common, PALs are rare. We previously proposed ligase activity determinants (LADs) of these enzymes that could determine whether they catalyze formation or breakage of peptide bonds. LADs are key residues forming the S2 and S1' substrate-binding pockets flanking the S1 active site. Here, we build on the LAD hypothesis with the engineering of ligases from proteases by mutating the S2 and S1' pockets of VcAEP, an AEP from Viola canadensis. Wild type VcAEP yields <5% cyclic product from a linear substrate at pH 6.5, whereas the single mutants VcAEP-V238A (Vc1a) and VcAEP-Y168A (Vc1b) targeting the S2 and S1' substrate-binding pockets yielded 34 and 61% cyclic products, respectively. The double mutant VcAEP-V238A/Y168A (Vc1c) targeting both the S2 and S1' substrate-binding pockets yielded >90% cyclic products. Vc1c had cyclization efficiency of 917,759 M-1s-1, which is one of the fastest rates for ligases yet reported. Vc1c is useful for protein engineering applications, including labeling of DARPins and cell surface MCF-7, as well as producing cyclic protein sfGFP. Together, our work validates the importance of LADs for AEP ligase activity and provides valuable tools for site-specific modification of proteins and biologics.
Collapse
Affiliation(s)
- Yu Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Dingpeng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|