1
|
Ma H, Zhou X, Zhang Z, Weng Z, Li G, Zhou Y, Yao Y. AI-Driven Design of Cell-Penetrating Peptides for Therapeutic Biotechnology. Int J Pept Res Ther 2024; 30:69. [DOI: 10.1007/s10989-024-10654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 01/05/2025]
|
2
|
Lan T, Peng C, Yao X, Chan RST, Wei T, Rupanya A, Radakovic A, Wang S, Chen S, Lovell S, Snyder SA, Bogyo M, Dickinson BC. Discovery of Thioether-Cyclized Macrocyclic Covalent Inhibitors by mRNA Display. J Am Chem Soc 2024; 146:24053-24060. [PMID: 39136646 DOI: 10.1021/jacs.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalization─installation of a covalent warhead─with mRNA display and showcases its application in targeted covalent ligand discovery.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Peng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiyuan Yao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel Shu Ting Chan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tongyao Wei
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anuchit Rupanya
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksandar Radakovic
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, United States
| |
Collapse
|
3
|
Cao X, Liu T, Wang T, Wang X, Xu Z, Zhou L, Tian C, Sun D. De Novo Screening and Mirror Image Isomerization of Linear Peptides Targeting α7 Nicotinic Acetylcholine Receptor. ACS Chem Biol 2024; 19:592-598. [PMID: 38380973 DOI: 10.1021/acschembio.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
As ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs) are widely distributed in the central and peripheral nervous systems and are associated with the pathogenesis of various degenerative neurological diseases. Here, we report the results of phage display-based de novo screening of an 11-residue linear peptide (named LKP1794) that targets the α7 nAChR, which is among the most abundant nAChR subtypes in the brain. Moreover, two d-peptides were generated through mirror image and/or primary sequence inverso isomerization (termed DRKP1794 and DKP1794) and displayed improved inhibitory effects (IC50 = 0.86 and 0.35 μM, respectively) on α7 nAChR compared with the parent l-peptide LKP1794 (IC50 = 2.48 μM), which markedly enhanced serum stability. A peptide-based fluorescence probe was developed using proteolytically resistant DKP1794 to specifically image the α7 nAChR in living cells. This work provides a new peptide tool to achieve inhibitory modulation and specifically image the α7 nAChR.
Collapse
Affiliation(s)
- Xiuxiu Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tianqi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xudong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ziyan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Zhou
- Anhui Provincial Peptide Drug Laboratory, Hefei 230026, P. R. China
| | - Changlin Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Provincial Peptide Drug Laboratory, Hefei 230026, P. R. China
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
- Beijing Life Science Academy, Beijing 102200, P. R. China
| | - Demeng Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Provincial Peptide Drug Laboratory, Hefei 230026, P. R. China
| |
Collapse
|