1
|
Winter AJ, de Courcy-Ireland F, Phillips AP, Barker JM, Bakar NA, Akter N, Wang L, Song Z, Crosby J, Williams C, Willis CL, Crump MP. An Integrated Module Performs Selective 'Online' Epoxidation in the Biosynthesis of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2024; 63:e202410502. [PMID: 39105412 DOI: 10.1002/anie.202410502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
The delineation of the complex biosynthesis of the potent antibiotic mupirocin, which consists of a mixture of pseudomonic acids (PAs) isolated from Pseudomonas fluorescens NCIMB 10586, presents significant challenges, and the timing and mechanisms of several key transformations remain elusive. Particularly intriguing are the steps that process the linear backbone from the initial polyketide assembly phase to generate the first cyclic intermediate PA-B. These include epoxidation as well as incorporation of the tetrahydropyran (THP) ring and fatty acid side chain required for biological activity. Herein, we show that the mini-module MmpE performs a rare online (ACP-substrate) epoxidation and is integrated ('in-cis') into the polyketide synthase via a docking domain. A linear polyketide fragment with six asymmetric centres was synthesised using a convergent approach and used to demonstrate substrate flux via an atypical KS0 and a previously unannotated ACP (MmpE_ACP). MmpE_ACP-bound synthetic substrates were critical in demonstrating successful epoxidation in vitro by the purified MmpE oxidoreductase domain. Alongside feeding studies, these results confirm the timing as well as chain length dependence of this selective epoxidation. These mechanistic studies pinpoint the location and nature of the polyketide substrate prior to the key formation of the THP ring and esterification that generate PA-B.
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | | | | | - Joseph M Barker
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | - Nurfarhanim A Bakar
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
- Department of Engineering and Sciences, School of Liberal Arts and Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Nahida Akter
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
- Department of Chemistry, University of Barisal, 8200, Barisal, Bangladesh
| | - Luoyi Wang
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhongshu Song
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | - John Crosby
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | | | | | - Matthew P Crump
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| |
Collapse
|
2
|
Di X, Li P, Xiahou Y, Wei H, Zhi S, Liu L. Recent Advances in Discovery, Structure, Bioactivity, and Biosynthesis of trans-AT Polyketides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21318-21343. [PMID: 39302874 DOI: 10.1021/acs.jafc.4c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex enzymes, which are responsible for generating a wide range of natural products, identified as trans-AT polyketides. These polyketides have received significant attention in drug development due to their structural diversity and potent bioactivities. With approximately 300 synthesized molecules discovered so far, trans-AT PKSs are found widespread in bacteria. Their biosynthesis pathways exhibit considerable genetic diversity, leading to the emergence of numerous enzymes with novel mechanisms, serving as a valuable resource for genetic engineering aimed at modifying small molecules' structures and creating new engineered enzymes. Despite the systematic discussions on trans-AT polyketides and their biosynthesis in earlier studies, the continuous advancements in tools, methods, compound identification, and biosynthetic pathways require a fresh update on accumulated knowledge. This review seeks to provide a comprehensive discussion for the 27 types of trans-AT polyketides discovered within the last seven years, detailing their sources, structures, biological activities, and biosynthetic pathways. By reviewing this new knowledge, a more profound understanding of the trans-AT polyketide family can be achieved.
Collapse
Affiliation(s)
- Xue Di
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Peng Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yinuo Xiahou
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
3
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
4
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2024; 41:157-161. [PMID: 38318713 DOI: 10.1039/d4np90005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as dcalycinumine A from Daphniphyllum calycinum.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow G12 8QQ, UK.
| | | |
Collapse
|