1
|
Zhang Z, Das C. Insights into mechanisms of ubiquitin ADP-ribosylation reversal. Biochem Soc Trans 2024; 52:2525-2537. [PMID: 39584475 DOI: 10.1042/bst20240896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation. Among the various regulatory effectors, the macrodomain effector MavL has been recently shown to reverse the Ub ADP-ribosylation and regenerate intact Ub. Here, we briefly outline emerging knowledge on ubiquitination and ADP-ribosylation and tap into cases of direct cross-talk between these two PTMs. The chemistry of ADP-ribose in the context of the PTM and the reversal mechanisms of ADP-ribosylation are then highlighted. Lastly, focusing on recent structural studies on the MavL-mediated reversal of Ub ADP-ribosylation, we strive to deduce distinct mechanisms regarding the catalysis and product release of this reaction.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
2
|
Minnee H, Codée JDC, Filippov DV. Mono-ADP-Ribosylation of Peptides: An Overview of Synthetic and Chemoenzymatic Methodologies. Chembiochem 2024; 25:e202400440. [PMID: 38984757 PMCID: PMC11664928 DOI: 10.1002/cbic.202400440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e. g. arginine, cysteine and glutamic acid, has been expanded with serine, tyrosine and histidine, among others. Well-defined ADPr-peptides are valuable tools for investigating the exact structures, mechanisms of action and interaction partners of the different flavors of this modification. This review provides a comprehensive overview of synthetic and chemoenzymatic methodologies that enabled the construction of peptides mono-ADP-ribosylated on various amino acids, and close mimetics thereof.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| |
Collapse
|
3
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
4
|
Abstract
Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Madern J, Voorneveld J, Rack JGM, Kistemaker HAV, Ahel I, van der Marel GA, Codée JDC, Filippov DV. 4-Thioribose Analogues of Adenosine Diphosphate Ribose (ADPr) Peptides. Org Lett 2023; 25:4980-4984. [PMID: 37338412 PMCID: PMC10353035 DOI: 10.1021/acs.orglett.3c01554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 06/21/2023]
Abstract
Adenosine diphosphate (ADP) ribosylation is an important post-translational modification (PTM) that plays a role in a wide variety of cellular processes. To study the enzymes responsible for the establishment, recognition, and removal of this PTM, stable analogues are invaluable tools. We describe the design and synthesis of a 4-thioribosyl APRr peptide that has been assembled by solid phase synthesis. The key 4-thioribosyl serine building block was obtained in a stereoselective glycosylation reaction using an alkynylbenzoate 4-thioribosyl donor.
Collapse
Affiliation(s)
- Jerre
M. Madern
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jim Voorneveld
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johannes G. M. Rack
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Hans A. V. Kistemaker
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ivan Ahel
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
Tashiro K, Wijngaarden S, Mohapatra J, Rack JGM, Ahel I, Filippov DV, Liszczak G. Chemoenzymatic and Synthetic Approaches To Investigate Aspartate- and Glutamate-ADP-Ribosylation. J Am Chem Soc 2023; 145:14000-14009. [PMID: 37315125 PMCID: PMC11065122 DOI: 10.1021/jacs.3c03771] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report here chemoenzymatic and fully synthetic methodologies to modify aspartate and glutamate side chains with ADP-ribose at specific sites on peptides. Structural analysis of aspartate and glutamate ADP-ribosylated peptides reveals near-quantitative migration of the side chain linkage from the anomeric carbon to the 2″- or 3″-ADP-ribose hydroxyl moieties. We find that this linkage migration pattern is unique to aspartate and glutamate ADP-ribosylation and propose that the observed isomer distribution profile is present in biochemical and cellular environments. After defining distinct stability properties of aspartate and glutamate ADP-ribosylation, we devise methods to install homogenous ADP-ribose chains at specific glutamate sites and assemble glutamate-modified peptides into full-length proteins. By implementing these technologies, we show that histone H2B E2 tri-ADP-ribosylation is able to stimulate the chromatin remodeler ALC1 with similar efficiency to histone serine ADP-ribosylation. Our work reveals fundamental principles of aspartate and glutamate ADP-ribosylation and enables new strategies to interrogate the biochemical consequences of this widespread protein modification.
Collapse
Affiliation(s)
- Kyuto Tashiro
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Sven Wijngaarden
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jugal Mohapatra
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
7
|
Ding D, Wen Y, Liao CM, Yin XG, Zhang RY, Wang J, Zhou SH, Zhang ZM, Zou YK, Gao XF, Wei HW, Yang GF, Guo J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. J Med Chem 2023; 66:1467-1483. [PMID: 36625758 PMCID: PMC9844103 DOI: 10.1021/acs.jmedchem.2c01642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xu-Guang Yin
- School of Medicine, Shaoxing
University, Shaoxing312000, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology,
Nanchang330013, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong226499, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| |
Collapse
|
8
|
Squair DR, Virdee S. A new dawn beyond lysine ubiquitination. Nat Chem Biol 2022; 18:802-811. [PMID: 35896829 DOI: 10.1038/s41589-022-01088-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
The ubiquitin system has become synonymous with the modification of lysine residues. However, the substrate scope and diversity of the conjugation machinery have been underappreciated, bringing us to an epoch in ubiquitin system research. The striking discoveries of metazoan enzymes dedicated toward serine and threonine ubiquitination have revealed the important role of nonlysine ubiquitination in endoplasmic reticulum-associated degradation, immune signaling and neuronal processes, while reports of nonproteinaceous substrates have extended ubiquitination beyond the proteome. Bacterial effectors that bypass the canonical ubiquitination machinery and form unprecedented linkage chemistry further redefine long-standing dogma. While chemical biology approaches have advanced our understanding of the canonical ubiquitin system, further study of noncanonical ubiquitination has been hampered by a lack of suitable tools. This Perspective aims to consolidate and contextualize recent discoveries and to propose potential applications of chemical biology, which will be instrumental in unraveling this new frontier of ubiquitin research.
Collapse
Affiliation(s)
- Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
9
|
Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J, Wu J. Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology. Front Cell Dev Biol 2022; 10:864101. [PMID: 35652091 PMCID: PMC9149570 DOI: 10.3389/fcell.2022.864101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation is a well-established post-translational modification that is inherently connected to diverse processes, including DNA repair, transcription, and cell signaling. The crucial roles of mono-ADP-ribosyltransferases (mono-ARTs) in biological processes have been identified in recent years by the comprehensive use of genetic engineering, chemical genetics, and proteomics. This review provides an update on current methodological advances in the study of these modifiers. Furthermore, the review provides details on the function of mono ADP-ribosylation. Several mono-ARTs have been implicated in the development of cancer, and this review discusses the role and therapeutic potential of some mono-ARTs in cancer.
Collapse
Affiliation(s)
- Yujie Gan
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Huanhuan Sha
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Miao Xu
- Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
- *Correspondence: Jifeng Feng,
| | - Jianzhong Wu
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
10
|
Zhang D, Wei W, Liu Y, Pu Y, Liu S. Dual Imaging of Poly(ADP-ribose) Polymerase-1 and Endogenous H 2O 2 for the Diagnosis of Cancer Cells Using Silver-Coated Gold Nanorods. Anal Chem 2021; 93:16248-16256. [PMID: 34839666 DOI: 10.1021/acs.analchem.1c04155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The imaging of tumor-related multitarget molecules is of great significance to raise the diagnostic accuracy for malignant tumors. Poly(ADP-ribose) polymerase-1 (PARP-1) has emerged as a potential clinical biomarker for tumor diagnosis due to its specific overexpression in cancer cells. High levels of H2O2 in the tumor microenvironment play vital roles in driving cancer progression. Inspired by these achievements, we employed a silver-coated gold nanorod (Au@Ag NR) as a plasmonic probe for dual imaging of intracellular PARP-1 and H2O2 under a dark-field microscope (DFM). Au@Ag NR was used not only to distinguish tumor cells from normal cells but also to induce the apoptosis of cancer cells owing to the etching of Ag shell by H2O2, accompanied by the color change from green to orange. On the other hand, Au@Ag NRs modified with active double-stranded DNA (dsDNA) could be utilized to image PARP-1 in cancer cells and quantitatively detect PARP-1 in vitro by naked eyes or DFM. The reason is that PARP-1 polymerized nicotinamideadenine dinucleotide (NAD+) into large and hyperbranched poly(ADP-ribose) polymer (PAR) on the surface of Au@Ag NRs, preventing the Ag shell from being etched by H2O2. As the PARP-1 activity increased, a blue-shift of the adsorption peak occurred along with a color change from pale pink to green, which could be recognized by naked eyes. Under DFM, its scattering light varied obviously from red to green. The proposed dual-imaging strategy holds good prospects in cancer diagnosis.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
11
|
Korn P, Classen A, Murthy S, Guareschi R, Maksimainen MM, Lippok BE, Galera‐Prat A, Sowa ST, Voigt C, Rossetti G, Lehtiö L, Bolm C, Lüscher B. Evaluation of 3- and 4-Phenoxybenzamides as Selective Inhibitors of the Mono-ADP-Ribosyltransferase PARP10. ChemistryOpen 2021; 10:939-948. [PMID: 34145784 PMCID: PMC8485830 DOI: 10.1002/open.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Intracellular ADP-ribosyltransferases catalyze mono- and poly-ADP-ribosylation and affect a broad range of biological processes. The mono-ADP-ribosyltransferase PARP10 is involved in signaling and DNA repair. Previous studies identified OUL35 as a selective, cell permeable inhibitor of PARP10. We have further explored the chemical space of OUL35 by synthesizing and investigating structurally related analogs. Key synthetic steps were metal-catalyzed cross-couplings and functional group modifications. We identified 4-(4-cyanophenoxy)benzamide and 3-(4-carbamoylphenoxy)benzamide as PARP10 inhibitors with distinct selectivities. Both compounds were cell permeable and interfered with PARP10 toxicity. Moreover, both revealed some inhibition of PARP2 but not PARP1, unlike clinically used PARP inhibitors, which typically inhibit both enzymes. Using crystallography and molecular modeling the binding of the compounds to different ADP-ribosyltransferases was explored regarding selectivity. Together, these studies define additional compounds that interfere with PARP10 function and thus expand our repertoire of inhibitors to further optimize selectivity and potency.
Collapse
Affiliation(s)
- Patricia Korn
- Institute of Biochemistry and Molecular BiologyMedical FacultyRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| | - Arno Classen
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Sudarshan Murthy
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuloUniversity of OuluPentti Kaiteran katu 190014OuluFinland
| | - Riccardo Guareschi
- Institute for Advanced Simulation (IAS-5)/Institute of Neuroscience and Medicine (INM-9)Jülich Supercomputing Centre (JSC)Forschungszentrum JülichWilhelm-Johnen-Strasse52425JülichGermany
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuloUniversity of OuluPentti Kaiteran katu 190014OuluFinland
| | - Barbara E. Lippok
- Institute of Biochemistry and Molecular BiologyMedical FacultyRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| | - Albert Galera‐Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuloUniversity of OuluPentti Kaiteran katu 190014OuluFinland
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuloUniversity of OuluPentti Kaiteran katu 190014OuluFinland
| | - Catharina Voigt
- Institute of Biochemistry and Molecular BiologyMedical FacultyRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| | - Giulia Rossetti
- Institute for Advanced Simulation (IAS-5)/Institute of Neuroscience and Medicine (INM-9)Jülich Supercomputing Centre (JSC)Forschungszentrum JülichWilhelm-Johnen-Strasse52425JülichGermany
- Juelich Supercomputing Center (JSC)Forschungszentrum JülichWilhelm-Johnen-Strasse52425JülichGermany
- Department of Oncology, Hematology and Stem Cell TransplantationMedical FacultyRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuloUniversity of OuluPentti Kaiteran katu 190014OuluFinland
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular BiologyMedical FacultyRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
12
|
Zha JJ, Tang Y, Wang YL. Role of mono-ADP-ribosylation histone modification (Review). Exp Ther Med 2021; 21:577. [PMID: 33850549 PMCID: PMC8027728 DOI: 10.3892/etm.2021.10009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The current knowledge regarding ADP-ribosylation modifications of histones, particularly mono-ADP-ribosylation modifications, is limited. However, recent studies have identified an increasing number of mono-ADP-ribosyltransferases and the role of mono-ADP-ribosylation has become a hot research topic. In particular, histones that are substrates of several mono-ADP-ribosyltransferases and mono-ADP-ribosylated histones were indicated to be involved in numerous physiological or pathological processes. Compared to poly-ADP-ribosylation histone modification, the use of mono-ADP-ribosylation histone modification is restricted by the limited methods for research into its function in physiological or pathological processes. The aim of the present review was to discuss the details regarding mono-ADP-ribosylation modification of histones and the currently known functions thereof, such as cell physiological and pathological processes, including tumorigenesis.
Collapse
Affiliation(s)
- Jing-Jing Zha
- Pathological Department, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
13
|
Challa S, Stokes MS, Kraus WL. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells 2021; 10:313. [PMID: 33546365 PMCID: PMC7913519 DOI: 10.3390/cells10020313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - MiKayla S. Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Rodriguez KM, Buch-Larsen SC, Kirby IT, Siordia IR, Hutin D, Rasmussen M, Grant DM, David LL, Matthews J, Nielsen ML, Cohen MS. Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. eLife 2021; 10:60480. [PMID: 33475084 PMCID: PMC7880690 DOI: 10.7554/elife.60480] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown. Here, we combine chemical genetics, proximity labeling, and proteome-wide amino acid ADP-ribosylation site profiling for identifying the direct targets and sites of PARP-7-mediated MARylation in a cellular context. We found that the inactive PARP family member, PARP-13-a critical regulator of the antiviral innate immune response-is a major target of PARP-7. PARP-13 is preferentially MARylated on cysteine residues in its RNA binding zinc finger domain. Proteome-wide ADP-ribosylation analysis reveals cysteine as a major MARylation acceptor of PARP-7. This study provides insight into PARP-7 targeting and MARylation site preference.
Collapse
Affiliation(s)
- Kelsie M Rodriguez
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sara C Buch-Larsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ilsa T Kirby
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - Ivan Rodriguez Siordia
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Larry L David
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| |
Collapse
|
15
|
Luo Y, Chen CH, Zhu F, Mo DL. Synthesis of α-aminooxy amides through [3 + 3] cycloaddition and Sc(OTf) 3-catalyzed double C-N bond cleavage in a one-pot reaction. Org Biomol Chem 2020; 18:8209-8218. [PMID: 33043956 DOI: 10.1039/d0ob01788d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various α-aminooxy amides bearing a quaternary carbon at the α-position were prepared in good to excellent yields under mild reaction conditions from N-vinyl nitrones and α-bromohydroxamates. The N-vinyl nitrones tolerate a wide range of N-vinyl fluorenone nitrones and N-vinyl isatin nitrones. Mechanistic studies show that the reaction initially proceeds through [3 + 3] cycloaddition between N-vinyl nitrones and aza-oxyallyl cations generated from α-bromohydroxamates to afford six-membered N,O-heterocycles, followed by double C-N bond cleavage in the presence of the Sc(OTf)3 catalyst. A selective N-O bond cleavage of the obtained α-aminooxy amides is also realized under Fe/NH4Cl conditions. Furthermore, gram-scalable preparations of α-aminooxy amides are easily achieved.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Chun-Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Fan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
16
|
Zhang D, Wang K, Wei W, Liu S. Single-Particle Assay of Poly(ADP-ribose) Polymerase-1 Activity with Dark-Field Optical Microscopy. ACS Sens 2020; 5:1198-1206. [PMID: 32208631 DOI: 10.1021/acssensors.0c00264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), over expression in vast majority of cancer cells, is a potential biomarker for clinical diagnosis. However, very limited detection methods have been developed so far, especially for in situ intracellular imaging. Here, we developed a spectral-resolved single-particle detection method for detection of PARP-1 in vitro and in situ intracellular imaging with dark-field microscopy (DFM). A gold nanoparticle (50 nm) modified with active DNA duplex (Au50-dsDNA) was used as a scattering probe. Under the function of active dsDNA, PARP-1 catalyzed to synthesize the hyperbranched poly (ADP-ribose) polymer (PAR) by using nicotinamideadenine dinucleotide as substrates, forming Au50-dsDNA@PAR. Then, negatively charged PAR adsorbed positively charged AuNPs (8 nm) to form Au50-dsDNA@PAR@Au8. As a result, a notable red shift occurred in localized surface plasmon resonance scattering spectra of Au50, accompanying with obvious color change. Thus, PARP-1 has been detected with a linear range from 0.2 to 10 mU based on the scattering spectra change. The detection limit was 2 orders of magnitude lower than previously reported methods. Probes showed distinct different colors in cancer cells and normal cells, realizing in situ imaging of intracellular PARP-1 at a single-particle level. Compared with previously reported fluorescence imaging methods, the proposed strategy avoided sophisticated label procedures, which has great potential to be used for clinical diagnosis and PARP-1 inhibitor research.
Collapse
Affiliation(s)
- Duoduo Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
17
|
Crawford CJ, Cordero RJB, Guazzelli L, Wear MP, Bowen A, Oscarson S, Casadevall A. Exploring Cryptococcus neoformans capsule structure and assembly with a hydroxylamine-armed fluorescent probe. J Biol Chem 2020; 295:4327-4340. [PMID: 32005661 PMCID: PMC7105310 DOI: 10.1074/jbc.ra119.012251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Indexed: 11/06/2022] Open
Abstract
Chemical biology is an emerging field that enables the study and manipulation of biological systems with probes whose reactivities provide structural insights. The opportunistic fungal pathogen Cryptococcus neoformans possesses a polysaccharide capsule that is a major virulence factor, but is challenging to study. We report here the synthesis of a hydroxylamine-armed fluorescent probe that reacts with reducing glycans and its application to study the architecture of the C. neoformans capsule under a variety of conditions. The probe signal localized intracellularly and at the cell wall-membrane interface, implying the presence of reducing-end glycans at this location where the capsule is attached to the cell body. In contrast, no fluorescence signal was detected in the capsule body. We observed vesicle-like structures containing the reducing-end probe, both intra- and extracellularly, consistent with the importance of vesicles in capsular assembly. Disrupting the capsule with DMSO, ultrasound, or mechanical shear stress resulted in capsule alterations that affected the binding of the probe, as reducing ends were exposed and cell membrane integrity was compromised. Unlike the polysaccharides in the assembled capsule, isolated exopolysaccharides contained reducing ends. The reactivity of the hydroxylamine-armed fluorescent probe suggests a model for capsule assembly whereby reducing ends localize to the cell wall surface, supporting previous findings suggesting that this is an initiation point for capsular assembly. We propose that chemical biology is a promising approach for studying the C. neoformans capsule and its associated polysaccharides to unravel their roles in fungal virulence.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Lorenzo Guazzelli
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205.
| |
Collapse
|
18
|
van
der Heden van
Noort GJ. Chemical Tools to Study Protein ADP-Ribosylation. ACS OMEGA 2020; 5:1743-1751. [PMID: 32039309 PMCID: PMC7003193 DOI: 10.1021/acsomega.9b03591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 05/03/2023]
Abstract
Post-translational modification of substrate proteins plays crucial roles in the regulation of their activity, cellular localization, and ability to be recognized by other proteins. One of those modifications involves the installment of adenosine-diphosphate-ribose (ADPr) onto nucleophilic side-chain groups of amino acid residues. This highly dynamic process is regulated by ADP-ribosyl transferases (ARTs) that install the ADPr-molecules on selected proteins and poly(ADP-ribosyl) glycohydrolases (PARGs) and (ADP-ribosyl)hydrolases (ARHs) that trim down and remove ADPr-chains. In this mini-review, the most recent advances in the chemical synthesis of ADPr-conjugates, poly-ADP-ribose, ADPr-peptides, and -proteins, and other tools to investigate ADPr-biology are discussed.
Collapse
|
19
|
Hoch NC, Polo LM. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol 2019; 43:e20190075. [PMID: 31930280 PMCID: PMC7198025 DOI: 10.1590/1678-4685-gmb-2019-0075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022] Open
Abstract
Post-translational modification of proteins by ADP-ribosylation, catalysed by
poly (ADP-ribose) polymerases (PARPs) using NAD+ as a substrate,
plays central roles in DNA damage signalling and repair, modulates a range of
cellular signalling cascades and initiates programmed cell death by parthanatos.
Here, we present mechanistic aspects of ADP-ribose modification, PARP activation
and the cellular functions of ADP-ribose signalling, and discuss how this
knowledge is uncovering therapeutic avenues for the treatment of increasingly
prevalent human diseases such as cancer, ischaemic damage and
neurodegeneration.
Collapse
Affiliation(s)
- Nicolas C Hoch
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis M Polo
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.,Institute of Histology and Embryology of Mendoza - CONICET, Mendoza, Argentina
| |
Collapse
|
20
|
Kirby IT, Cohen MS. Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics. Curr Top Microbiol Immunol 2019; 420:211-231. [PMID: 30242511 PMCID: PMC11793873 DOI: 10.1007/82_2018_137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last 60 years, poly-ADP-ribose polymerases (PARPs, 17 family members in humans) have emerged as important regulators of physiology and disease. Small-molecule inhibitors have been essential tools for unraveling PARP function, and recently the first PARP inhibitors have been approved for the treatment of various human cancers. However, inhibitors have only been developed for a few PARPs and in vitro profiling has revealed that many of these exhibit polypharmacology across the PARP family. In this review, we discuss the history, development, and current state of the field, highlighting the limitations and opportunities for PARP inhibitor development.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR, 97210, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97210, USA
| | - Michael S Cohen
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR, 97210, USA.
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97210, USA.
| |
Collapse
|
21
|
Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 2019; 14:236-243. [PMID: 29443986 DOI: 10.1038/nchembio.2568] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022]
Abstract
ADP-ribosylation-the transfer of ADP-ribose (ADPr) from NAD+ onto target molecules-is catalyzed by members of the ADP-ribosyltransferase (ART) superfamily of proteins, found in all kingdoms of life. Modification of amino acids in protein targets by ADPr regulates critical cellular pathways in eukaryotes and underlies the pathogenicity of certain bacteria. Several members of the ART superfamily are highly relevant for disease; these include the poly(ADP-ribose) polymerases (PARPs), recently shown to be important cancer targets, and the bacterial toxins diphtheria toxin and cholera toxin, long known to be responsible for the symptoms of diphtheria and cholera that result in morbidity. In this Review, we discuss the functions of amino acid ADPr modifications and the ART proteins that make them, the nature of the chemical linkage between ADPr and its targets and how this impacts function and stability, and the way that ARTs select specific amino acids in targets to modify.
Collapse
|
22
|
Morgan RK, Kirby IT, Vermehren-Schmaedick A, Rodriguez K, Cohen MS. Rational Design of Cell-Active Inhibitors of PARP10. ACS Med Chem Lett 2019; 10:74-79. [PMID: 30655950 DOI: 10.1021/acsmedchemlett.8b00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/29/2018] [Indexed: 02/01/2023] Open
Abstract
Poly-ADP-ribose polymerases (PARPs 1-16) have emerged as major regulators of diverse cellular processes. PARPs can be subclassified based on their ability to catalyze poly-ADP-ribosylation (PARylation) or mono-ADP-ribosylation (MARylation). While much is known about the cellular roles of PARPs that catalyze PARylation (e.g., PARP1), the function of PARPs that catalyze MARylation (e.g., PARP10) is substantially less understood. This is due in large part to the lack of small-molecule inhibitors that are selective for individual PARP family members that catalyze MARylation. Herein, we describe the rational design and synthesis of selective inhibitors of PARP10. Using structure-based design, we targeted a hydrophobic subpocket within the nicotinamide-binding site of PARP10. We synthesized a series of small molecules based on a 3,4-dihydroisoquinolin-1(2H)-one (dq, 1) scaffold that contain various substituents at the C-5 and C-6 positions designed to exploit this hydrophobic subpocket. We found a dq analogue (22) that contains a methyl group at the C-5 position and a substituted pyridine at the C-6 position that exhibits >10-fold selectivity for PARP10 over a large subset of other PARP family members. The results of this study will serve as a platform for future small-molecule probe development for PARP10 and other PARP family members that catalyze MARylation.
Collapse
|
23
|
Kirby IT, Kojic A, Arnold MR, Thorsell AG, Karlberg T, Vermehren-Schmaedick A, Sreenivasan R, Schultz C, Schüler H, Cohen MS. A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity. Cell Chem Biol 2018; 25:1547-1553.e12. [PMID: 30344052 DOI: 10.1016/j.chembiol.2018.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation. Here we describe the structure-guided design of inhibitors of PARPs that catalyze MARylation. The most selective analog, ITK7, potently inhibits the MARylation activity of PARP11, a nuclear envelope-localized PARP. ITK7 is greater than 200-fold selective over other PARP family members. Using live-cell imaging, we show that ITK7 causes PARP11 to dissociate from the nuclear envelope. These results suggest that the cellular localization of PARP11 is regulated by its catalytic activity.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; EMBL, Heidelberg University, Heidelberg, Germany
| | - Moriah R Arnold
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Anke Vermehren-Schmaedick
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Raashi Sreenivasan
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Carsten Schultz
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States; European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Michael S Cohen
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States.
| |
Collapse
|
24
|
Voorneveld J, Rack JGM, Ahel I, Overkleeft HS, van der Marel GA, Filippov DV. Synthetic α- and β-Ser-ADP-ribosylated Peptides Reveal α-Ser-ADPr as the Native Epimer. Org Lett 2018; 20:4140-4143. [PMID: 29947522 PMCID: PMC6038095 DOI: 10.1021/acs.orglett.8b01742] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A solid-phase methodology to synthesize oligopeptides, specifically incorporating serine residues linked to ADP-ribose (ADPr), is presented. Through the synthesis of both α- and β-anomers of the phosphoribosylated Fmoc-Ser building block and their usage in our modified solid-phase peptide synthesis protocol, both α- and β-ADPr peptides from a naturally Ser-ADPr containing H2B sequence were obtained. With these, and by digestion studies using the human glycohydrolase, ARH3 (hARH3), compelling evidence is obtained that the α-Ser-ADPr linkage comprises the naturally occurring configuration.
Collapse
Affiliation(s)
- Jim Voorneveld
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Johannes G M Rack
- Sir William Dunn School of Pathology , University of Oxford , South Parks Road Oxford OX1 3RE , United Kingdom
| | - Ivan Ahel
- Sir William Dunn School of Pathology , University of Oxford , South Parks Road Oxford OX1 3RE , United Kingdom
| | - Herman S Overkleeft
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| |
Collapse
|
25
|
Zhang L, Lin H. Using Clickable NAD + Analogs to Label Substrate Proteins of PARPs. Methods Mol Biol 2018; 1608:95-109. [PMID: 28695506 DOI: 10.1007/978-1-4939-6993-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ADP-ribosylation has been well known as an important posttranslational modification, which is catalyzed by a family of enzymes called poly(ADP-ribose) polymerases (PARPs). PARPs transfer of a single or multiple adenine diphosphate ribose (ADP-ribose) units from nicotinamide adenine dinucleotide (NAD+) to specific amino acids on substrate proteins. Through mono- or poly-ADP-ribosylation enzymatic activities, PARPs regulate various biological processes, including DNA damage repair, chromatin remodeling, transcriptional regulation, RNA processing and metabolism. Notably, PARP inhibitors are in clinical trials to treat human diseases, in particular cancer. To further investigate the biological function of PARPs, and to achieve better therapeutic effect of PARP inhibitors, it is important to identify the physiological substrates of PARPs. Here we describe a protocol to use clickable analog of nicotinamide adenine dinucleotide (NAD+) that can be applied for the detection, affinity purification and identification of substrate proteins of PARPs.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Kirby IT, Morgan RK, Cohen MS. A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors. Methods Mol Biol 2018; 1813:245-252. [PMID: 30097873 PMCID: PMC11793872 DOI: 10.1007/978-1-4939-8588-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Poly-ADP-ribose polymerases (also known as ADP-ribosyltransferases or ARTDs) are a family of 17 enzymes in humans that catalyze the reversible posttranslational modification known as ADP-ribosylation. PARPs are implicated in diverse cellular processes, from DNA repair to the unfolded protein response. Small-molecule inhibitors of PARPs have improved our understanding of PARP-mediated biology and, in some cases, have emerged as promising treatments for cancers and other human diseases. However these advancements are hindered, in part, by a poor understanding of inhibitor selectivity across the PARP family. Here, we describe a simple, sensitive, and generalizable plate assay to test the potency and selectivity of small molecules against several PARP enzymes in vitro. In principle, this assay can be extended to all active PARPs, providing a convenient and direct comparison of inhibitors across the entire PARP enzyme family.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Rory K Morgan
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
27
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
28
|
Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, Chatterjee M, Kuśmider B, Reon B, Parlak M, Gorbunova V, Abbas T, Jeffery E, Sherman NE, Paschal BM. Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Mol Cell 2017; 66:503-516.e5. [PMID: 28525742 DOI: 10.1016/j.molcel.2017.04.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Adam Spencer
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Natalia Dworak
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Li Ni
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Luke T Oostdyk
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA
| | - Mandovi Chatterjee
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Beata Kuśmider
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Brian Reon
- Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA
| | - Mahmut Parlak
- Department of Radiation Oncology, University of Virginia, PO Box 800383, Charlottesville, VA 22908, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, 434 Hutchison Hall, Rochester, NY 14627, USA
| | - Tarek Abbas
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA; Department of Radiation Oncology, University of Virginia, PO Box 800383, Charlottesville, VA 22908, USA
| | - Erin Jeffery
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Pinn Hall, Room 1034, Charlottesville, VA 22908, USA
| | - Nicholas E Sherman
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Pinn Hall, Room 1034, Charlottesville, VA 22908, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA.
| |
Collapse
|
29
|
Westcott NP, Fernandez JP, Molina H, Hang HC. Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress. Nat Chem Biol 2017; 13:302-308. [PMID: 28092360 DOI: 10.1038/nchembio.2280] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
ADP-ribosylation is a post-translational modification that is known to be involved in cellular homeostasis and stress but has been challenging to analyze biochemically. To facilitate the detection of ADP-ribosylated proteins, we show that an alkyne-adenosine analog, N6-propargyl adenosine (N6pA), is metabolically incorporated in mammalian cells and enables fluorescence detection and proteomic analysis of ADP-ribosylated proteins. Notably, our analysis of N6pA-labeled proteins that are upregulated by oxidative stress revealed differential ADP-ribosylation of small GTPases. We discovered that oxidative stress induced ADP-ribosylation of Hras on Cys181 and Cys184 in the C-terminal hypervariable region, which are normally S-fatty-acylated. Downstream Hras signaling is impaired by ADP-ribosylation during oxidative stress, but is rescued by ADP-ribosyltransferase inhibitors. Our study demonstrates that ADP-ribosylation of small GTPases not only is mediated by bacterial toxins but is endogenously regulated in mammalian cells. N6pA provides a useful tool to characterize ADP-ribosylated proteins and their regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Nathan P Westcott
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Joseph P Fernandez
- Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| |
Collapse
|
30
|
Abstract
ADP-ribosylation, a posttranslational modification catalyzed by a family of enzymes known as poly(ADP-ribose) polymerases (PARPs, 17 in humans), regulates diverse cellular processes. To aid in understanding the functions of ADP-ribosylation in cells, we developed a clickable aminooxy probe, AO-alkyne, which detects ADP-ribosylation of acidic amino acids. AO-alkyne can be used to detect auto-ADP-ribosylation of PARP10 in cells following Cu-catalyzed click conjugation to an azide reporter. This method can be extended to other PARP family members that catalyze ADP-ribosylation on acidic amino acids, providing a convenient and direct readout of PARP activity in cells.
Collapse
|
31
|
Chuh KN, Batt AR, Pratt MR. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chem Biol 2016; 23:86-107. [PMID: 26933738 DOI: 10.1016/j.chembiol.2015.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna R Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
32
|
Matthews ML, He L, Horning BD, Olson EJ, Correia BE, Yates JR, Dawson PE, Cravatt BF. Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nat Chem 2016; 9:234-243. [PMID: 28221344 PMCID: PMC5325178 DOI: 10.1038/nchem.2645] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as the side chains of serine and cysteine, using electrophilic probes. We show here that "reverse-polarity" (RP)-ABPP using clickable, nucleophilic hydrazine probes can capture and identify protein-bound electrophiles in cells, including the pyruvoyl cofactor of S-adenosyl-l-methionine decarboxylase (AMD1), which we find is dynamically controlled by intracellular methionine concentrations, and a heretofore unknown modification – an N-terminally bound glyoxylyl group – in the poorly characterized protein secernin-3. RP-ABPP thus provides a versatile method to monitor the metabolic regulation of electrophilic cofactors and discover novel types of electrophilic modifications on proteins in human cells. A chemical proteomic strategy is described for the discovery of protein-bound electrophilic groups in human cells and used to characterize dynamic regulation of the pyruvoyl catalytic cofactor in S-adenosyl-l-methionine decarboxylase and to discover an N-terminal glyoxylyl modification on Secernin proteins.
Collapse
Affiliation(s)
- Megan L Matthews
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Lin He
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.,Bioinformatics Solutions Inc., Waterloo, Ontario N2L 6J2, Canada
| | - Benjamin D Horning
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Erika J Olson
- Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Bruno E Correia
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.,École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - John R Yates
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Philip E Dawson
- Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Benjamin F Cravatt
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH. Biosensor reveals multiple sources for mitochondrial NAD⁺. Science 2016; 352:1474-7. [PMID: 27313049 DOI: 10.1126/science.aad5168] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases (PARPs), which are NAD(+)-consuming enzymes localized in the nucleus, cytosol, and mitochondria. Fluctuations in NAD(+) concentrations within these subcellular compartments are thought to regulate the activity of NAD(+)-consuming enzymes; however, the challenge in measuring compartmentalized NAD(+) in cells has precluded direct evidence for this type of regulation. We describe the development of a genetically encoded fluorescent biosensor for directly monitoring free NAD(+) concentrations in subcellular compartments. We found that the concentrations of free NAD(+) in the nucleus, cytoplasm, and mitochondria approximate the Michaelis constants for sirtuins and PARPs in their respective compartments. Systematic depletion of enzymes that catalyze the final step of NAD(+) biosynthesis revealed cell-specific mechanisms for maintaining mitochondrial NAD(+) concentrations.
Collapse
Affiliation(s)
- Xiaolu A Cambronne
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - DongHo Kim
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amber M Jones-Brunette
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rory K Morgan
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S Cohen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard H Goodman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
34
|
Carter-O'Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I, Cohen MS. Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Rep 2016; 14:621-631. [PMID: 26774478 PMCID: PMC5423403 DOI: 10.1016/j.celrep.2015.12.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023] Open
Abstract
ADP-ribosyltransferases (ARTD1-16) have emerged as major downstream effectors of NAD(+) signaling in the cell. Most ARTDs (ARTD7 and 8, 10-12, and 14-17) catalyze the transfer of a single unit of ADP-ribose from NAD(+) to target proteins, a process known as mono-ADP-ribosylation (MARylation). Progress in understanding the cellular functions of MARylation has been limited by the inability to identify the direct targets for individual mono-ARTDs. Here, we engineered mono-ARTDs to use an NAD(+) analog that is orthogonal to wild-type ARTDs. We profiled the MARylomes of ARTD10 and ARTD11 in vitro, identifying isoform-specific targets and revealing a potential role for ARTD11 in nuclear pore complex biology. We found that ARTD11 targeting is dependent on both its regulatory and catalytic domains, which has important implications for how ARTDs recognize their targets. We anticipate that our chemical genetic strategy will be generalizable to all mono-ARTD family members based on the similarity of the mono-ARTD catalytic domains.
Collapse
Affiliation(s)
- Ian Carter-O'Connell
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA
| | - Haihong Jin
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA
| | - Rory K Morgan
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Larry L David
- Department of Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael S Cohen
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA.
| |
Collapse
|
35
|
Morgan RK, Carter-O'Connell I, Cohen MS. Selective inhibition of PARP10 using a chemical genetics strategy. Bioorg Med Chem Lett 2015; 25:4770-4773. [PMID: 26231158 PMCID: PMC4607647 DOI: 10.1016/j.bmcl.2015.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
The lack of inhibitors that are selective for individual poly-ADP-ribose polymerase (PARP) family members has limited our understanding of their roles in cells. Here, we describe a chemical genetics approach for generating selective inhibitors of an engineered variant of PARP10. We synthesized a series of C-7 substituted 3,4-dihydroisoquinolin-1(2H)-one (dq) analogues designed to selectively inhibit a mutant of PARP10 (LG-PARP10) that contains a unique pocket in its active site. A dq analogue containing a bromo at the C-7 position demonstrated a 10-fold selectivity for LG-PARP10 compared to its WT counterpart. This study provides a platform for the development of selective inhibitors of individual PARP family members that will be useful for decoding their cellular functions.
Collapse
Affiliation(s)
- Rory K Morgan
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, #L334, Biomedical Research Building, Rm 621, Portland, OR 97239-3098, United States
| | - Ian Carter-O'Connell
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, #L334, Biomedical Research Building, Rm 621, Portland, OR 97239-3098, United States
| | - Michael S Cohen
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, #L334, Biomedical Research Building, Rm 621, Portland, OR 97239-3098, United States.
| |
Collapse
|