1
|
Gangopadhyay S, Das G, Gupta S, Ghosh A, Bagale SS, Roy PK, Mandal M, Harikrishna S, Sinha S, Gore KR. 4'- C-Acetamidomethyl-2'- O-methoxyethyl Nucleic Acid Modifications Improve Thermal Stability, Nuclease Resistance, Potency, and hAgo2 Binding of Small Interfering RNAs. J Org Chem 2024; 89:3747-3768. [PMID: 38394362 DOI: 10.1021/acs.joc.3c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In this study, we designed the 4'-C-acetamidomethyl-2'-O-methoxyethyl (4'-C-ACM-2'-O-MOE) uridine and thymidine modifications, aiming to test them into small interfering RNAs. Thermal melting studies revealed that incorporating a single 4'-C-ACM-2'-O-MOE modification in the DNA duplex reduced thermal stability. In contrast, an increase in thermal stability was observed when the modification was introduced in DNA:RNA hybrid and in siRNAs. Thermal destabilization in DNA duplex was attributed to unfavorable entropy, which was mainly compensated by the enthalpy factor to some extent. A single 4'-C-ACM-2'-O-MOE thymidine modification at the penultimate position of the 3'-end of dT20 oligonucleotides in the presence of 3'-specific exonucleases, snake venom phosphodiesterase (SVPD), demonstrated significant stability as compared to monomer modifications including 2'-O-Me, 2'-O-MOE, and 2'-F. In gene silencing studies, we found that the 4'-C-ACM-2'-O-MOE uridine or thymidine modifications at the 3'-overhang in the passenger strand in combination with two 2'-F modifications exhibited superior RNAi activity. The results suggest that the dual modification is well tolerated at the 3'-end of the passenger strand, which reflects better siRNA stability and silencing activity. Interestingly, 4'-C-ACM-2'-O-MOE-modified siRNAs showed considerable gene silencing even after 96 h posttransfection; it showed that our modification could induce prolonged gene silencing due to improved metabolic stability. Molecular modeling studies revealed that the introduction of the 4'-C-ACM-2'-O-MOE modification at the 3'-end of the siRNA guide strand helps to anchor the strand within the PAZ domain of the hAgo2 protein. The overall results indicate that the 4'-C-ACM-2'-O-MOE uridine and thymidine modifications are promising modifications to improve the stability, potency, and hAgo2 binding of siRNAs.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur 700032, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur 700032, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur 700032, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
3
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
4
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
5
|
Li Q, Trajkovski M, Fan C, Chen J, Zhou Y, Lu K, Li H, Su X, Xi Z, Plavec J, Zhou C. 4'-SCF 3 -Labeling Constitutes a Sensitive 19 F NMR Probe for Characterization of Interactions in the Minor Groove of DNA. Angew Chem Int Ed Engl 2022; 61:e202201848. [PMID: 36163470 PMCID: PMC9828712 DOI: 10.1002/anie.202201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/12/2023]
Abstract
Fluorinated nucleotides are invaluable for 19 F NMR studies of nucleic acid structure and function. Here, we synthesized 4'-SCF3 -thymidine (T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ ) and incorporated it into DNA by means of solid-phase DNA synthesis. NMR studies showed that the 4'-SCF3 group exhibited a flexible orientation in the minor groove of DNA duplexes and was well accommodated by various higher order DNA structures. The three magnetically equivalent fluorine atoms in 4'-SCF3 -DNA constitute an isolated spin system, offering high 19 F NMR sensitivity and excellent resolution of the positioning of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ within various secondary and tertiary DNA structures. The high structural adaptability and high sensitivity of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ make it a valuable 19 F NMR probe for quantitatively distinguishing diverse DNA structures with single-nucleotide resolution and for monitoring the dynamics of interactions in the minor groove of double-stranded DNA.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China,Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
6
|
Pal S, Chandra G, Patel S, Singh S. Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application. CHEM REC 2022; 22:e202100335. [PMID: 35253973 DOI: 10.1002/tcr.202100335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Over the last twenty years, fluorination on nucleoside has established itself as the most promising tool to use to get biologically active compounds that could sustain the clinical trial by affecting the pharmacodynamics and pharmacokinetic properties. Due to fluorine's inherent unique properties and its judicious introduction into the molecule, makes the corresponding nucleoside metabolically very stable, lipophilic, and opens a new site of intermolecular binding. Fluorination on various nucleosides has been extensively studied as a result, a series of fluorinated nucleosides come up for different therapeutic uses which are either approved by the FDA or under the advanced stage of the clinical trial. Here in this review, we are summarizing the latest development in the chemistry of fluorination on nucleoside that led to varieties of new analogs like carbocyclic, acyclic, and conformationally biased nucleoside and their biological properties, the influence of fluorine on conformation, oligonucleotide stability, and their use in therapeutics.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Sakshi Singh
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| |
Collapse
|
7
|
Jana SK, Harikrishna S, Sudhakar S, El-Khoury R, Pradeepkumar PI, Damha MJ. Nucleoside Analogues with a Seven-Membered Sugar Ring: Synthesis and Structural Compatibility in DNA-RNA Hybrids. J Org Chem 2022; 87:2367-2379. [PMID: 35133166 DOI: 10.1021/acs.joc.1c02254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we describe results on the pairing properties of synthetic DNA and RNA oligonucleotides that contain nucleotide analogues with a 7-membered sugar ring (oxepane nucleotides). Specifically, we describe the stereoselective synthesis of a set of three oxepane thymine nucleosides (OxT), their conversion to phosphoramidite derivatives, and their use in solid-phase synthesis to yield chimeric OxT-DNA and OxT-RNA strands. The different regioisomeric OxT phosphoramidites allowed for positional variations of the phosphate bridge and assessment of duplex stability when the oxepane nucleotides were incorporated in dsDNA, dsRNA, and DNA-RNA hybrids. Little to no destabilization was observed when two of the three regioisomeric OxT units were incorporated in the DNA strand of DNA-RNA hybrids, a remarkable result considering the dramatically different structure of oxepanes in comparison to 2'-deoxynucleosides. Extensive molecular modeling and dynamics studies further revealed the various structural features responsible for the tolerance of both OxT modifications in DNA-RNA duplexes, such as base-base stacking and sugar-phosphate H-bond interactions. These studies suggest that oxepane nucleotide analogues may find applications in synthetic biology, where synthetic oligonucleotides can be used to create new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- Sunit Kumar Jana
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - S Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
8
|
Zhou Y, Lu K, Li Q, Fan C, Zhou C. C4'-Fluorinated Oligodeoxynucleotides: Synthesis, Stability, Structural Studies. Chemistry 2021; 27:14738-14746. [PMID: 34432342 DOI: 10.1002/chem.202102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/06/2022]
Abstract
Fluoro-substitution on the ribose moiety (e. g., 2'-F-deoxyribonucleotide) represents a popular way to modulate the ribose conformation and, hence, the structure and function of nucleic acids. In the present study, we synthesized 4'-F-deoxythymidine (4'-F T) and introduced it to oligodeoxyribonucleotides (ODNs). Though scission of the glycosylic bond of 4'-F T followed by strand cleavage occurred to some extent under alkaline conditions, the 4'-F T-modified ODNs were rather stable in neutral buffers. NMR studies showed that like 2'-F-deoxyribonucleoside, 4'-F T exists predominantly in the North conformation not only in the nucleoside form but also in the context of ODN strands. Circular dichroism spectroscopy, thermal denaturing and RNase H1 footprinting studies of 4'-F T-modified ODN/cDNA and ODN/cRNA duplexes indicated that the North conformation tendency of 4'-F T is maintained in the duplexes, leading to a local structural perturbation. Collectively, 4'-F-deoxyribonucleotide structurally resembles the 2'-F-deoxyribonucleotide but imparts less structural perturbation to the duplex than the latter.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
10
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
11
|
Akabane-Nakata M, Erande ND, Kumar P, Degaonkar R, Gilbert JA, Qin J, Mendez M, Woods LB, Jiang Y, Janas M, O’Flaherty DK, Zlatev I, Schlegel M, Matsuda S, Egli M, Manoharan M. siRNAs containing 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides: in vitro and in vivo RNAi activity and inability of mitochondrial polymerases to incorporate 2'-F-NMC NTPs. Nucleic Acids Res 2021; 49:2435-2449. [PMID: 33577685 PMCID: PMC7969009 DOI: 10.1093/nar/gkab050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/13/2021] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.
Collapse
Affiliation(s)
| | - Namrata D Erande
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Pawan Kumar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Rohan Degaonkar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - June Qin
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Martha Mendez
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Lauren Blair Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Derek K O’Flaherty
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021; 31:245-270. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi), a gene regulatory process mediated by small interfering RNAs (siRNAs), has made remarkable progress as a potential therapeutic agent against various diseases. However, RNAi is associated with fundamental challenges such as poor systemic delivery and susceptibility to the nucleases. Targeting ligand-bound delivery vehicles has improved the accumulation of drug at the target site, which has resulted in high transfection efficiency and enhanced gene silencing. Recently, folate receptor (FR)-mediated targeted delivery of siRNAs has garnered attention due to their enhanced cellular uptake and high transfection efficiency toward tumor cells. Folic acid (FA), due to its small size, low immunogenicity, high in vivo stability, and high binding affinity toward FRs, has attracted much attention for targeted siRNA delivery. FRs are overexpressed in a large number of tumors, including ovarian, breast, kidney, and lung cancer cells. In this review, we discuss recent advances in FA-mediated siRNA delivery to treat cancers and inflammatory diseases. This review summarizes various FA-conjugated nanoparticle systems reported so far in the literature, including liposome, silica, metal, graphene, dendrimers, chitosan, organic copolymers, and RNA nanoparticles. This review will help in the design and development of potential delivery vehicles for siRNA drug targeting to tumor cells using an FR-mediated approach.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rahul R Nikam
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
13
|
Kubo T, Nishimura Y, Sato Y, Yanagihara K, Seyama T. Sixteen Different Types of Lipid-Conjugated siRNAs Containing Saturated and Unsaturated Fatty Acids and Exhibiting Enhanced RNAi Potency. ACS Chem Biol 2021; 16:150-164. [PMID: 33346648 DOI: 10.1021/acschembio.0c00847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SiRNAs are strong gene-silencing agents that function in a target sequence-specific manner. Although siRNAs might one day be used in therapy for intractable diseases such as cancers, a number of problems with siRNAs must first be overcome. In this study, we developed 16 different types of lipid-conjugated siRNAs (lipid-siRNAs) that could effectively inhibit the expression of target genes. We determined the hybridization properties, cellular uptake efficacies, and RNAi potencies of the resulting lipid-siRNAs. The lipid-siRNAs exhibited a mild interaction with Lipofectamine RNAiMAX (LFRNAi) as a transfection reagent, and a high membrane permeability was observed in all lipid-siRNAs-LFRNAi complexes; the conjugate siRNAs composed of 16-18 carbon chains as fatty acids showed an especially good cellular uptake efficacy. The in vitro RNAi effect of lipid-siRNAs targeted to a β-catenin gene exhibited a strong RNAi potency compared with those of unmodified siRNAs. In particular, the conjugate siRNAs composed of 16-18 carbon chains as fatty acids showed excellent RNAi potencies with prolonged effectivities. Interestingly, the RNAi potencies of conjugate siRNAs containing 18 carbon chains with a trans-form (elaidic acid and trans-vaccenic acid) were inferior to those of the carbon chains with a cis-form (oleic acid and cis-vaccenic acid). These lipid-siRNAs can solve the many problems hindering the clinical application of siRNAs.
Collapse
Affiliation(s)
| | | | | | - Kazuyoshi Yanagihara
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | | |
Collapse
|
14
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
15
|
|
16
|
Li Q, Chen J, Trajkovski M, Zhou Y, Fan C, Lu K, Tang P, Su X, Plavec J, Xi Z, Zhou C. 4′-Fluorinated RNA: Synthesis, Structure, and Applications as a Sensitive 19F NMR Probe of RNA Structure and Function. J Am Chem Soc 2020; 142:4739-4748. [DOI: 10.1021/jacs.9b13207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Zhou Y, Zang C, Wang H, Li J, Cui Z, Li Q, Guo F, Yan Z, Wen X, Xi Z, Zhou C. 4'-C-Trifluoromethyl modified oligodeoxynucleotides: synthesis, biochemical studies, and cellular uptake properties. Org Biomol Chem 2020; 17:5550-5560. [PMID: 31112186 DOI: 10.1039/c9ob00765b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report the synthesis of 4'-C-trifluoromethyl (4'-CF3) thymidine (T4'-CF3) and its incorporation into oligodeoxynucleotides (ODNs) through solid-supported DNA synthesis. The 4'-CF3 modification leads to a marginal effect on the deoxyribose conformation and a local helical structure perturbation for ODN/RNA duplexes. This type of modification slightly decreases the thermal stability of ODN/RNA duplexes (-1 °C/modification) and leads to improved nuclease resistance. Like the well-known phosphorothioate (PS) modification, heavy 4'-CF3 modifications enable direct cellular uptake of the modified ODNs without any delivery reagents. This work highlights that 4'-CF3 modified ODNs are promising candidates for antisense-based therapeutics, which will, in turn, inspire us to develop more potent modifications for antisense ODNs and siRNAs.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Harp JM, Guenther DC, Bisbe A, Perkins L, Matsuda S, Bommineni GR, Zlatev I, Foster DJ, Taneja N, Charisse K, Maier MA, Rajeev KG, Manoharan M, Egli M. Structural basis for the synergy of 4'- and 2'-modifications on siRNA nuclease resistance, thermal stability and RNAi activity. Nucleic Acids Res 2019; 46:8090-8104. [PMID: 30107495 PMCID: PMC6144868 DOI: 10.1093/nar/gky703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2′/O2′ atoms are the most common sites for modification. Compared to 2′-O-substituents, ribose 4′-C-substituents lie in proximity of both the 3′- and 5′-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2′-F and 2′-OMe with 4′-Cα- and 4′-Cβ-OMe, and 2′-F with 4′-Cα-methyl modification. The α- and β-epimers of 4′-C-OMe-uridine and the α-epimer of 4′-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4′α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2′-substituent (H, F, OMe). The 4′β-epimers are strongly destabilizing, but afford complete resistance against an exonuclease with the phosphate or phosphorothioate backbones. Crystal structures of RNA octamers containing 2′-F,4′-Cα-OMe-U, 2′-F,4′-Cβ-OMe-U, 2′-OMe,4′-Cα-OMe-U, 2′-OMe,4′-Cβ-OMe-U or 2′-F,4′-Cα-Me-U help rationalize these observations and point to steric and electrostatic origins of the unprecedented nuclease resistance seen with the chain-inverted 4′β-U epimer. We used structural models of human Argonaute 2 in complex with guide siRNA featuring 2′-F,4′-Cα-OMe-U or 2′-F,4′-Cβ-OMe-U at various sites in the seed region to interpret in vitro activities of siRNAs with the corresponding 2′-/4′-C-modifications.
Collapse
Affiliation(s)
- Joel M Harp
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Lydia Perkins
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Donald J Foster
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Nate Taneja
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Martin A Maier
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
- To whom correspondence should be addressed. Tel: +1 615 343 8070; Fax: +1 615 343 0704; . Correspondence may also be addressed to Muthiah Manoharan. Tel: +1 617 551 8319; Fax: +1 617 551 8101;
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
- To whom correspondence should be addressed. Tel: +1 615 343 8070; Fax: +1 615 343 0704; . Correspondence may also be addressed to Muthiah Manoharan. Tel: +1 617 551 8319; Fax: +1 617 551 8101;
| |
Collapse
|
19
|
Malek-Adamian E, Fakhoury J, Arnold AE, Martínez-Montero S, Shoichet MS, Damha MJ. Effect of Sugar 2',4'-Modifications on Gene Silencing Activity of siRNA Duplexes. Nucleic Acid Ther 2019; 29:187-194. [PMID: 31084536 PMCID: PMC6686699 DOI: 10.1089/nat.2019.0792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we explore the effect of a library of 2′-, 4′-, and 2′,4′-modified uridine nucleosides and their impact on silencing firefly luciferase and on down-regulated in renal cell carcinoma (DRR) gene targets. The modifications studied were 2′-F-ribose, 2′-F-arabinose, 2′-OMe-ribose, 2′-F,4′-OMe-ribose, 2′-F,4′-OMe-arabinose, and 2′-OMe,4′-F-ribose. We found that 2′,4′-modifications are well tolerated within A-form RNA duplexes, leading to virtually no change in melting temperature as assessed by UV thermal melting. The impact of the dual (2′,4′) modification was assessed by comparing gene silencing ability to 2′- or 4′- (singly) modified siRNA counterparts. siRNAs with (2′,4′)-modified overhangs generally outperformed the native siRNA as well as siRNAs with a 2′- or 4′-modified overhang, suggesting that 2′,4′-modified nucleotides interact favorably with Argonaute protein's PAZ domain. Among the most active siRNAs were those with 2′-F,4′-OMe-ribose or 2′-F,4′-OMe-arabinose at the overhangs. When modifications were placed at both overhangs and internal positions, a duplex with the 2′-F (internal) and 2′-F,4′-OMe (overhang) combination was found to be the most potent, followed by the duplex with 2′-OMe (internal) and 2′,4′-diOMe (overhang) modifications. Given the nuclease resistance exhibited by 2′,4′-modified siRNAs, particularly when the modification is placed at or near the overhangs, these findings may allow the creation of superior siRNAs for therapy.
Collapse
Affiliation(s)
| | - Johans Fakhoury
- 1Department of Chemistry, McGill University, Montreal, Canada
| | - Amy E Arnold
- 2Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | | - Molly S Shoichet
- 2Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.,3Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,4Department of Chemistry, University of Toronto, Toronto, Canada
| | - Masad J Damha
- 1Department of Chemistry, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Akabane-Nakata M, Kumar P, Das RS, Erande ND, Matsuda S, Egli M, Manoharan M. Synthesis and Biophysical Characterization of RNAs Containing 2'-Fluorinated Northern Methanocarbacyclic Nucleotides. Org Lett 2019; 21:1963-1967. [PMID: 30892051 DOI: 10.1021/acs.orglett.8b04153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2'-Fluorinated Northern methanocarbacyclic (2'-F-NMC) nucleosides and phosphoramidites, based on a bicyclo[3.1.0]hexane scaffold bearing all four natural nucleobases (U, C, A, and G), were synthesized to enable exploration of this novel nucleotide modification related to the clinically validated 2'-deoxy-2'-fluororibonucleotides (2'-F-RNA). Biophysical properties of the 2'-F-NMC-containing oligonucleotides were evaluated. A duplex of 2'-F-NMC-modified oligonucleotide with RNA exhibited thermal stability similar to that of the parent RNA duplex, 2'-F-NMC-modified oligonucleotides had higher stability against 5'- and 3'-exonucleolytic degradation than the corresponding oligonucleotides modified with 2'-F-RNA, and 2'-F-NMC-modified oligonucleotides exhibited higher lipophilicity than the corresponding RNA oligonucleotides as well as those modified with 2'-F-RNA.
Collapse
Affiliation(s)
- Masaaki Akabane-Nakata
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Pawan Kumar
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Rajat S Das
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Namrata D Erande
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
21
|
Frei S, Katolik AK, Leumann CJ. Synthesis, biophysical properties, and RNase H activity of 6'-difluoro[4.3.0]bicyclo-DNA. Beilstein J Org Chem 2019; 15:79-88. [PMID: 30680042 PMCID: PMC6334804 DOI: 10.3762/bjoc.15.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Here we present the synthesis, the biophysical properties, and the RNase H profile of 6'-difluorinated [4.3.0]bicyclo-DNA (6'-diF-bc4,3-DNA). The difluorinated thymidine phosphoramidite building block was synthesized starting from an already known gem-difluorinated tricyclic glycal. This tricyclic siloxydifluorocyclopropane was converted into the [4.3.0]bicyclic nucleoside via cyclopropane ring-opening through the addition of an electrophilic iodine during the nucleosidation step followed by reduction. The gem-difluorinated bicyclic nucleoside was then converted into the corresponding phosphoramidite building block which was incorporated into oligonucleotides. Thermal denaturation experiments of these oligonucleotides hybridized to complementary DNA or RNA disclosed a significant destabilization of both duplex types (ΔT m/mod = -1.6 to -5.5 °C). However, in the DNA/RNA hybrid the amount of destabilization could be reduced by multiple insertions of the modified unit. In addition, CD spectroscopy of the oligonucleotides hybridized to RNA showed a similar structure than the natural DNA/RNA duplex. Furthermore, since the structural investigation on the nucleoside level by X-ray crystallography and ab initio calculations pointed to a furanose conformation in the southern region, a RNase H cleavage assay was conducted. This experiment revealed that the oligonucleotide containing five modified units was able to elicit the RNase H-mediated cleavage of the complementary RNA strand.
Collapse
Affiliation(s)
- Sibylle Frei
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Adam K Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
22
|
Frei S, Istrate A, Leumann CJ. 6'-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations. Beilstein J Org Chem 2018; 14:3088-3097. [PMID: 30643586 PMCID: PMC6317435 DOI: 10.3762/bjoc.14.288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing unsaturated 6'-fluoro[4.3.0]bicyclo nucleotides (6'F-bc4,3-DNA). Two 6'F-bc4,3 phosphoramidite building blocks (T and C) were synthesized starting from a previously described [3.3.0]bicyclic sugar. The conversion of this sugar to a gem-difluorinated tricyclic intermediate via difluorocarbene addition followed either by a NIS-mediated or Vorbrüggen nucleosidation yielded in both cases the β-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates afforded the unsaturated 6'F-bc4,3 nucleosides. The successful incorporation of the corresponding phosphoramidite building blocks into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus complementary DNA (ΔT m/mod = -1.5 to -3.7 °C). Molecular dynamics simulation on the nucleoside and oligonucleotide level revealed the preference of the C1'-exo/C2'-endo alignment of the furanose ring. Moreover, the simulation of duplexes with complementary RNA disclosed a DNA/RNA-type duplex structure suggesting that this modification might be a substrate for RNase H.
Collapse
Affiliation(s)
- Sibylle Frei
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
23
|
O'Reilly D, Stein RS, Patrascu MB, Jana SK, Kurian J, Moitessier N, Damha MJ. Exploring Atypical Fluorine-Hydrogen Bonds and Their Effects on Nucleoside Conformations. Chemistry 2018; 24:16432-16439. [PMID: 30125398 DOI: 10.1002/chem.201803940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel O'Reilly
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Robin S. Stein
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Mihai Burai Patrascu
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Sunit Kumar Jana
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Jerry Kurian
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Nicolas Moitessier
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Masad J. Damha
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| |
Collapse
|
24
|
Gu R, Oweida T, Yingling YG, Chilkoti A, Zauscher S. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules 2018; 19:3525-3535. [PMID: 30011192 DOI: 10.1021/acs.biomac.8b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.
Collapse
Affiliation(s)
| | - Thomas Oweida
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | | |
Collapse
|
25
|
Gymnotic delivery and gene silencing activity of reduction-responsive siRNAs bearing lipophilic disulfide-containing modifications at 2'-position. Bioorg Med Chem 2018; 26:4635-4643. [PMID: 30121212 DOI: 10.1016/j.bmc.2018.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022]
Abstract
Modified oligoribonucleotides used as siRNAs bearing biolabile disulfide-containing groups at some 2'-positions were synthesized following a post-synthesis transformation of solid-supported 2'-O-acetylthiomethyl RNA, previously described. Thus, the reduction-responsive and lipophilic benzyldithiomethyl (BnSSM) modification was introduced at different locations into siRNAs targeting the Ewing sarcoma EWS-Fli1 protein. Thermal stability, serum stability and response to glutathione treatment of modified siRNAs were thoroughly investigated. Among 17 modified siRNAs, significant gene silencing activities were demonstrated for the 8 most stable siRNAs in serum (half-life > 1 h) when using a transfection reagent. Of special interest, two naked 2'-O-BnSSM siRNAs transfection exhibited a remarkable gene silencing activity after 24 h incubation. These inhibitions are consistent with an efficient gymnotic delivery demonstrated by the presence of the corresponding fluorescent siRNAs within cells.
Collapse
|
26
|
Malek-Adamian E, Patrascu MB, Jana SK, Martínez-Montero S, Moitessier N, Damha MJ. Adjusting the Structure of 2'-Modified Nucleosides and Oligonucleotides via C4'-α-F or C4'-α-OMe Substitution: Synthesis and Conformational Analysis. J Org Chem 2018; 83:9839-9849. [PMID: 29963864 DOI: 10.1021/acs.joc.8b01329] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the first syntheses of three nucleoside analogues, namely, 2',4'-diOMe-rU, 2'-OMe,4'-F-rU, and 2'-F,4'-OMe-araU, via stereoselective introduction of fluorine or methoxy functionalities at the C4'-α-position of a 4',5'-olefinic intermediate. Conformational analyses of these nucleosides and comparison to other previously reported 2',4'-disubstituted nucleoside analogues make it possible to evaluate the effect of fluorine and methoxy substitution on the sugar pucker, as assessed by NMR, X-ray diffraction, and computational methods. We found that C4'-α-F/OMe substituents reinforce the C3'-endo ( north) conformation of 2'-OMe-rU. Furthermore, the predominant C2'-endo ( south/ east) conformation of 2'-F-araU switches to C3'-endo upon introduction of these substituents at C4'. The nucleoside analogues were incorporated into DNA and RNA oligonucleotides via standard phosphoramidite chemistry, and their effects on the thermal stability of homo- and heteroduplexes were assessed via UV thermal melting experiments. We found that 4'-substituents can modulate the binding affinity of the parent 2'-modified oligomers, inducing a mildly destabilizing or stabilizing effect depending on the duplex type. This study expands the spectrum of oligonucleotide modifications available for rational design of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Mihai Burai Patrascu
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Sunit Kumar Jana
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Saúl Martínez-Montero
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Masad J Damha
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| |
Collapse
|
27
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
28
|
Malek-Adamian E, Guenther DC, Matsuda S, Martínez-Montero S, Zlatev I, Harp J, Burai Patrascu M, Foster DJ, Fakhoury J, Perkins L, Moitessier N, Manoharan RM, Taneja N, Bisbe A, Charisse K, Maier M, Rajeev KG, Egli M, Manoharan M, Damha MJ. 4'-C-Methoxy-2'-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing. J Am Chem Soc 2017; 139:14542-14555. [PMID: 28937776 DOI: 10.1021/jacs.7b07582] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dale C Guenther
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Mihai Burai Patrascu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Donald J Foster
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lydia Perkins
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Masad J Damha
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
29
|
Morihiro K, Kasahara Y, Obika S. Biological applications of xeno nucleic acids. MOLECULAR BIOSYSTEMS 2017; 13:235-245. [PMID: 27827481 DOI: 10.1039/c6mb00538a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Xeno nucleic acids (XNAs) are a group of chemically modified nucleic acid analogues that have been applied to various biological technologies such as antisense oligonucleotides, siRNAs and aptamers.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
30
|
Istrate A, Katolik A, Istrate A, Leumann CJ. 2'β-Fluoro-Tricyclo Nucleic Acids (2'F-tc-ANA): Thermal Duplex Stability, Structural Studies, and RNase H Activation. Chemistry 2017; 23:10310-10318. [PMID: 28477335 DOI: 10.1002/chem.201701476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 01/16/2023]
Abstract
We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'β-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications.
Collapse
Affiliation(s)
- Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
31
|
Selvam C, Mutisya D, Prakash S, Ranganna K, Thilagavathi R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem Biol Drug Des 2017; 90:665-678. [PMID: 28378934 DOI: 10.1111/cbdd.12993] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Abstract
Small interfering RNAs (siRNAs) are one of the valuable tools to investigate the functions of genes and are also used for gene silencing. It has a wide scope in drug discovery through in vivo target validation. siRNA therapeutics are not optimal drug-like molecules due to poor bioavailability and immunogenic and off-target effects. To overcome the challenges associated with siRNA therapeutics, identification of appropriate chemical modifications that improves the stability, specificity and potency of siRNA is essential. This review focuses on the various chemical modifications and their implications in siRNA therapy.
Collapse
Affiliation(s)
- Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Daniel Mutisya
- Department of Science and Mathematics, Albany State University, Albany, GA, USA
| | - Sandhya Prakash
- Department of Biotechnology, Faculty of Engineering, Karpagam University, Coimbatore, India
| | - Kasturi Ranganna
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam University, Coimbatore, India
| |
Collapse
|
32
|
Harikrishna S, Pradeepkumar PI. Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations. J Chem Inf Model 2017; 57:883-896. [DOI: 10.1021/acs.jcim.6b00773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S. Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai−400076, India
| | - P. I. Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai−400076, India
| |
Collapse
|
33
|
Latorre A, Latorre A, Somoza Á. Modifizierte RNAs in CRISPR/Cas9: ein bewährter Trick, der immer noch funktioniert. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201512002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alfonso Latorre
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia); Unidad Asociada al Centro Nacional de Biotecnología (CSIC); Faraday 9 28049 Madrid Spanien
| | - Ana Latorre
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia); Unidad Asociada al Centro Nacional de Biotecnología (CSIC); Faraday 9 28049 Madrid Spanien
| | - Álvaro Somoza
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia); Unidad Asociada al Centro Nacional de Biotecnología (CSIC); Faraday 9 28049 Madrid Spanien
| |
Collapse
|
34
|
Latorre A, Latorre A, Somoza Á. Modified RNAs in CRISPR/Cas9: An Old Trick Works Again. Angew Chem Int Ed Engl 2016; 55:3548-50. [PMID: 26880106 DOI: 10.1002/anie.201512002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Old tricks, new dog: CRISPR/Cas9 is a powerful tool for gene editing that requires an endonuclease (Cas9) and RNA strands. It has been shown that chemical modification of the RNA structures, an approach that has been used to improve the efficiency of RNA interference, can also be applied to enhance the activity of CRISPR/Cas9 and reduce its off-target effects.
Collapse
Affiliation(s)
- Alfonso Latorre
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Faraday 9, 28049, Madrid, Spain
| | - Ana Latorre
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Faraday 9, 28049, Madrid, Spain
| | - Álvaro Somoza
- IMDEA Nanociencia & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Faraday 9, 28049, Madrid, Spain.
| |
Collapse
|
35
|
Kumar M, Kumar R, Rana N, Prasad AK. Synthesis of 3′-azido/-amino-xylobicyclonucleosides. RSC Adv 2016. [DOI: 10.1039/c5ra25222a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipozyme® TL IM mediated the selective deacetylation of one of the two acetoxy groups in 4-C-acetoxymethyl-5-O-acetyl-3-azido-3-deoxy-1,2-O-isopropylidene-α-d-xylofuranose, leading to the first efficient syntheses of 3′-azido/3′-amino-xylobicyclonucleosides T, U, C and A.
Collapse
Affiliation(s)
- Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Rajesh Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Neha Rana
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| |
Collapse
|
36
|
Kumar R, Kumar M, Maity J, Prasad AK. Chemo-enzymatic synthesis of 3′-O,4′-C-methylene-linked α-l-arabinonucleosides. RSC Adv 2016. [DOI: 10.1039/c6ra17218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biocatalytic methodology has been developed for the efficient and environment friendly synthesis of 3′-O,4′-C-methylene-linked α-l-arabinonucleosides.
Collapse
Affiliation(s)
- Rajesh Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Jyotirmoy Maity
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
37
|
Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem 2015; 7:2221-42. [PMID: 26510815 DOI: 10.4155/fmc.15.144] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.
Collapse
|