1
|
Feng M, Santhanam RK, Xing H, Zhou M, Jia H. Inhibition of γ-secretase/Notch pathway as a potential therapy for reversing cancer drug resistance. Biochem Pharmacol 2024; 220:115991. [PMID: 38135129 DOI: 10.1016/j.bcp.2023.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The mechanism of tumor drug resistance is complex and may involve stem cell maintenance, epithelial-mesenchymal transition, the activation of survival signaling pathways, transporter protein expression, and tumor microenvironment remodeling, all of which are linked to γ-secretase/Notch signaling. Increasing evidence has shown that the activation of the γ-secretase/Notch pathway is a key driver of cancer progression and drug resistance development and that γ-secretase inhibitors (GSIs) may be the most promising agents for reversing chemotherapy resistance of tumors by targeting the γ-secretase/Notch pathway. Here, we systematically summarize the roles in supporting γ-secretase/Notch activation-associated transformation of cancer cells into cancer stem cells, promotion of the EMT process, PI3K/Akt, MEK/ERK and NF-κB activation, enhancement of ABC transporter protein expression, and TME alteration in mediating tumor drug resistance. Subsequently, we analyze the mechanism of GSIs targeting the γ-secretase/Notch pathway to reverse tumor drug resistance and propose the outstanding advantages of GSIs in treating breast cancer drug resistance over other tumors. Finally, we emphasize that the development of GSIs for reversing tumor drug resistance is promising.
Collapse
Affiliation(s)
- Mei Feng
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Huan Xing
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China
| | - Mingsheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China.
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
2
|
Chen S, Liang C, Li H, Yu W, Prothiwa M, Kopczynski D, Loroch S, Fransen M, Verhelst SHL. Pepstatin-Based Probes for Photoaffinity Labeling of Aspartic Proteases and Application to Target Identification. ACS Chem Biol 2023; 18:686-692. [PMID: 36920024 DOI: 10.1021/acschembio.2c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.
Collapse
Affiliation(s)
- Suyuan Chen
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Chunguang Liang
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany.,Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hongli Li
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Weimeng Yu
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany
| | - Michaela Prothiwa
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Ruhr-Universität Bochum, Medizinisches Proteom-Center, Building ProDi E2.240, Gesundheitscampus 4, D-44801 Bochum, Germany.,ProtiFi LLC, 1000 Turk Hill Road, Suite 180, 2nd Floor, Fairport, New York 14450, United States
| | - Marc Fransen
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Small molecules targeting γ-secretase and their potential biological applications. Eur J Med Chem 2022; 232:114169. [DOI: 10.1016/j.ejmech.2022.114169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
|
4
|
Xu Y, Wang C, Wey HY, Liang Y, Chen Z, Choi SH, Ran C, Rynearson KD, Bernales DR, Koegel RE, Fiedler SA, Striar R, Wagner SL, Tanzi RE, Zhang C. Molecular imaging of Alzheimer's disease-related gamma-secretase in mice and nonhuman primates. J Exp Med 2021; 217:152091. [PMID: 32936886 PMCID: PMC7553790 DOI: 10.1084/jem.20182266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/24/2019] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) is primarily driven by brain accumulation of the amyloid-β-42 (Aβ42) peptide generated from the amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. γ-Secretase is a prime drug target for AD; however, its brain regional expression and distribution remain largely unknown. Here, we are aimed at developing molecular imaging tools for visualizing γ-secretase. We used our recently developed γ-secretase modulators (GSMs) and synthesized our GSM-based imaging agent, [11C]SGSM-15606. We subsequently performed molecular imaging in rodents, including AD transgenic animals, and macaques, which revealed that our probe displayed good brain uptake and selectivity, stable metabolism, and appropriate kinetics and distribution for imaging γ-secretase in the brain. Interestingly, rodents and macaques shared certain brain areas with high γ-secretase expression, suggesting a functional conservation of γ-secretase. Collectively, we have provided the first molecular brain imaging of γ-secretase, which may not only accelerate our drug discovery for AD but also advance our understanding of AD.
Collapse
Affiliation(s)
- Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Daniela R Bernales
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Robert E Koegel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Stephanie A Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA.,Research Biologist, VA San Diego Healthcare System, La Jolla, CA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| |
Collapse
|
5
|
Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T, Nie P, Zhai Y, Wang JC, Tcw J, Guo L, McKenzie A, Ming C, Zhou X, Wang M, Sagi Y, Renton AE, Esposito BT, Kim Y, Sadleir KR, Trinh I, Rissman RA, Vassar R, Zhang B, Johnson DS, Masliah E, Greengard P, Goate A, Li YM. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease. Nature 2020; 586:735-740. [PMID: 32879487 PMCID: PMC7919141 DOI: 10.1038/s41586-020-2681-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-β is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-β. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-β. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Xianzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina Crump
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Si Jia Pan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marilia Barros
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Pengju Nie
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yujia Zhai
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jen Chyong Wang
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Tcw
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yotam Sagi
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bianca T Esposito
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA
| | | | - Ivy Trinh
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert Vassar
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Luo W, Ip FCF, Fu G, Cheung K, Tian Y, Hu Y, Sinha A, Cheng EYL, Wu X, Bustos V, Greengard P, Li YM, Sinha SC, Ip NY. A Pentacyclic Triterpene from Ligustrum lucidum Targets γ-Secretase. ACS Chem Neurosci 2020; 11:2827-2835. [PMID: 32786303 DOI: 10.1021/acschemneuro.0c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid-beta peptides generated by β-secretase- and γ-secretase-mediated successive cleavage of amyloid precursor protein are believed to play a causative role in Alzheimer's disease. Thus, reducing amyloid-beta generation by modulating γ-secretase remains a promising approach for Alzheimer's disease therapeutic development. Here, we screened fruit extracts of Ligustrum lucidum Ait. (Oleaceae) and identified active fractions that increase the C-terminal fragment of amyloid precursor protein and reduce amyloid-beta production in a neuronal cell line. These fractions contain a mixture of two isomeric pentacyclic triterpene natural products, 3-O-cis- or 3-O-trans-p-coumaroyl maslinic acid (OCMA), in different ratios. We further demonstrated that trans-OCMA specifically inhibits γ-secretase and decreases amyloid-beta levels without influencing cleavage of Notch. By using photoactivatable probes targeting the subsites residing in the γ-secretase active site, we demonstrated that trans-OCMA selectively affects the S1 subsite of the active site in this protease. Treatment of Alzheimer's disease transgenic model mice with trans-OCMA or an analogous carbamate derivative of a related pentacyclic triterpene natural product, oleanolic acid, rescued the impairment of synaptic plasticity. This work indicates that the naturally occurring compound trans-OCMA and its analogues could become a promising class of small molecules for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Wenjie Luo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Fanny C. F. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen−Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China 518057
| | - Guangmiao Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Kit Cheung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Yuan Tian
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yueqing Hu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Elaine Y. L. Cheng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Xianzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Victor Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen−Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China 518057
| |
Collapse
|
7
|
Nie P, Vartak A, Li YM. γ-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of γ-Secretase. Semin Cell Dev Biol 2020; 105:43-53. [PMID: 32249070 DOI: 10.1016/j.semcdb.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
Over two decades, γ-secretase has been the target for extensive therapeutic development due to its pivotal role in pathogenesis of Alzheimer's disease and cancer. However, it has proven to be a challenging task owing to its large set of substrates and our limited understanding of the enzyme's structural and mechanistic features. The scientific community is taking bigger strides towards solving this puzzle with recent advancement in techniques like cryogenic electron microscopy (cryo-EM) and photo-affinity labelling (PAL). This review highlights the significance of the PAL technique with multiple examples of photo-probes developed from γ-secretase inhibitors and modulators. The binding of these probes into active and/or allosteric sites of the enzyme has provided crucial information on the γ-secretase complex and improved our mechanistic understanding of this protease. Combining the knowledge of function and regulation of γ-secretase will be a decisive factor in developing novel γ-secretase modulators and biological therapeutics.
Collapse
Affiliation(s)
- Pengju Nie
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Abhishek Vartak
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
8
|
Wongchitrat P, Pakpian N, Kitidee K, Phopin K, Dharmasaroja PA, Govitrapong P. Alterations in the Expression of Amyloid Precursor Protein Cleaving Enzymes mRNA in Alzheimer Peripheral Blood. Curr Alzheimer Res 2020; 16:29-38. [PMID: 30411686 DOI: 10.2174/1567205015666181109103742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in elderly populations. Changes in the expression of the Amyloid Precursor Protein (APP)-cleaving enzymes directly affect the formation of Amyloid Beta (Aβ) plaques, a neuropathological hallmark of AD. OBJECTIVE We used peripheral blood from AD patients to investigate the expression of genes related to APP-processing [(β-site APP-cleaving enzyme 1 (BACE1), presenilin1 (PSEN1), and a disintegrin and metalloproteinase family 10 (ADAM10) and 17 (ADAM17)] and the epigenetic genes sirtuin (SIRT)1-3, which regulate Aβ production. METHOD Real-time polymerase chain reactions were performed to determine the specific mRNA levels in plasma. The mRNA levels in AD patients were compared to those in healthy persons and assessed in relation to the subjects' cognitive performance. RESULTS BACE1 mRNA level in AD subjects was significantly higher than those of healthy controls, whereas ADAM10 level was significantly lower in the AD subjects. The SIRT1 level was significantly decreased, while that of SIRT2 was increased in AD subjects and elderly controls compared to levels in healthy young control. In addition, correlations were found between the expression levels of BACE1, ADAM10 and SIRT1 and cognitive performance scores. Total Aβ (Aβ40+Aβ42) levels and the Aβ40/Aβ42 ratio were significantly increased in the AD subjects, whereas decrease in plasma Aβ42 was found in AD subjects. There was a negative correlation between Aβ40 or total Aβ and Thai Mental State Examination (TMSE) while there was no correlation between Aβ40/Aβ42 ratio or Aβ42 and TMSE. CONCLUSION The present findings provide evidence and support for the potential roles of these enzymes that drive Aβ synthesis and for epigenetic regulation in AD progression and development, which can possibly be considered peripheral markers of AD.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, Thailand
| | - Nattaporn Pakpian
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakon Pathom, Thailand
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, Thailand
| | - Pornpatr A Dharmasaroja
- Stroke and Neurodegenerative Diseases Research Unit, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakon Pathom, Thailand.,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
9
|
Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624439 DOI: 10.1016/j.bbamcr.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In addition to divergent subcellular localisations, distinct differences in the mechanistic properties and substrate requirements of individual family members have been unravelled. SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in the sensitivity to currently available inhibitory compounds have been reported. Though far from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in particular based on studies in mice, has been significantly increased over the last years. Based on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will discuss in this review. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
10
|
Beyond Chemoselectivity: Catalytic Site-Selective Aldolization of Diketones and Exploitation for Enantioselective Alzheimer's Drug Candidate Synthesis. Chemistry 2016; 22:14342-8. [DOI: 10.1002/chem.201602900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 11/07/2022]
|
11
|
Crump CJ, Murrey HE, Ballard TE, am Ende CW, Wu X, Gertsik N, Johnson DS, Li YM. Development of Sulfonamide Photoaffinity Inhibitors for Probing Cellular γ-Secretase. ACS Chem Neurosci 2016; 7:1166-73. [PMID: 27253220 DOI: 10.1021/acschemneuro.6b00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
γ-Secretase is a multiprotein complex that catalyzes intramembrane proteolysis associated with Alzheimer's disease and cancer. Here, we have developed potent sulfonamide clickable photoaffinity probes that target γ-secretase in vitro and in cells by incorporating various photoreactive groups and walking the clickable alkyne handle to different positions around the molecule. We found that benzophenone is preferred over diazirine as a photoreactive group within the sulfonamide scaffold for labeling γ-secretase. Intriguingly, the placement of the alkyne at different positions has little effect on probe potency but has a significant impact on the efficiency of labeling of γ-secretase. Moreover, the optimized clickable photoprobe, 163-BP3, was utilized as a cellular probe to effectively assess the target engagement of inhibitors with γ-secretase in primary neuronal cells. In addition, biotinylated 163-BP3 probes were developed and used to capture the native γ-secretase complex in the 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) solubilized state. Taken together, these next generation clickable and biotinylated sulfonamide probes offer new tools to study γ-secretase in biochemical and cellular systems. Finally, the data provide insights into structural features of the sulfonamide inhibitor binding site in relation to the active site and into the design of clickable photoaffinity probes.
Collapse
Affiliation(s)
- Christina J. Crump
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| | - Heather E. Murrey
- Pfizer Worldwide Research and Development, Worldwide Medicinal Chemistry, Cambridge, Massachusetts 02139, United States
| | - T. Eric Ballard
- Pfizer Worldwide Research and Development, Worldwide
Medicinal Chemistry Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Worldwide
Medicinal Chemistry Groton, Connecticut 06340, United States
| | - Xianzhong Wu
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| | - Natalya Gertsik
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development, Worldwide Medicinal Chemistry, Cambridge, Massachusetts 02139, United States
| | - Yue-Ming Li
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
12
|
Nguyen MTN, Kersavond TV, Verhelst SHL. Chemical Tools for the Study of Intramembrane Proteases. ACS Chem Biol 2015; 10:2423-34. [PMID: 26473325 DOI: 10.1021/acschembio.5b00693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramembrane proteases (IMPs) reside inside lipid bilayers and perform peptide hydrolysis in transmembrane or juxtamembrane regions of their substrates. Many IMPs are involved in crucial regulatory pathways and human diseases, including Alzheimer's disease, Parkinson's disease, and diabetes. In the past, chemical tools have been instrumental in the study of soluble proteases, enabling biochemical and biomedical research in complex environments such as tissue lysates or living cells. However, IMPs place special challenges on probe design and applications, and progress has been much slower than for soluble proteases. In this review, we will give an overview of the available chemical tools for IMPs, including activity-based probes, affinity-based probes, and synthetic substrates. We will discuss how these have been used to increase our structural and functional understanding of this fascinating group of enzymes, and how they might be applied to address future questions and challenges.
Collapse
Affiliation(s)
- Minh T. N. Nguyen
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Tim Van Kersavond
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
- KU Leuven − University of Leuven, Department
of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 Box 802, 3000 Leuven, Belgium
| |
Collapse
|