1
|
Moonmuang S, Maniratanachote R, Chetprayoon P, Sornsuwan K, Thongkum W, Chupradit K, Tayapiwatana C. Specific Interaction of DARPin with HIV-1 CA NTD Disturbs the Distribution of Gag, RNA Packaging, and Tetraspanin Remodelling in the Membrane. Viruses 2022; 14:v14040824. [PMID: 35458554 PMCID: PMC9025900 DOI: 10.3390/v14040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
A designed repeat scaffold protein (AnkGAG1D4) recognizing the human immunodeficiency virus-1 (HIV-1) capsid (CA) was formerly established with antiviral assembly. Here, we investigated the molecular mechanism of AnkGAG1D4 function during the late stages of the HIV-1 replication cycle. By applying stimulated emission-depletion (STED) microscopy, Gag polymerisation was interrupted at the plasma membrane. Disturbance of Gag polymerisation triggered Gag accumulation inside producer cells and trapping of the CD81 tetraspanin on the plasma membrane. Moreover, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) experiments were performed to validate the packaging efficiency of RNAs. Our results advocated that AnkGAG1D4 interfered with the Gag precursor protein from selecting HIV-1 and cellular RNAs for encapsidation into viral particles. These findings convey additional information on the antiviral activity of AnkGAG1D4 at late stages of the HIV-1 life cycle, which is potential for an alternative anti-HIV molecule.
Collapse
Affiliation(s)
- Sutpirat Moonmuang
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Department of Medical Technology, Division of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Maniratanachote
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (R.M.); (P.C.)
| | - Paninee Chetprayoon
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (R.M.); (P.C.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
| | - Weeraya Thongkum
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Koollawat Chupradit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Department of Medical Technology, Division of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
2
|
Targeting the Virus Capsid as a Tool to Fight RNA Viruses. Viruses 2022; 14:v14020174. [PMID: 35215767 PMCID: PMC8879806 DOI: 10.3390/v14020174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
Collapse
|
3
|
Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH, Lange MJ. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 2022; 50:1701-1717. [PMID: 35018437 PMCID: PMC8860611 DOI: 10.1093/nar/gkab1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.
Collapse
Affiliation(s)
- Paige R Gruenke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Rachna Aneja
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Welbourn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Obiaara B Ukah
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. J Virol 2021; 95:JVI.00883-20. [PMID: 33148797 PMCID: PMC7925099 DOI: 10.1128/jvi.00883-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.
Collapse
|
5
|
Zhang DW, Luo RH, Xu L, Yang LM, Xu XS, Bedwell GJ, Engelman AN, Zheng YT, Chang S. A HTRF based competitive binding assay for screening specific inhibitors of HIV-1 capsid assembly targeting the C-Terminal domain of capsid. Antiviral Res 2019; 169:104544. [PMID: 31254557 DOI: 10.1016/j.antiviral.2019.104544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
Abstract
Due to its multifaceted essential roles in virus replication and extreme genetic fragility, the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein is a valued therapeutic target. However, CA is as yet unexploited clinically, as there are no antiviral agents that target it currently on the market. To facilitate the identification of potential HIV-1 CA inhibitors, we established a homogeneous time-resolved fluorescence (HTRF) assay to screen for small molecules that target a biologically active and specific binding pocket in the C-terminal domain of HIV-1 CA (CA CTD). The assay, which is based on competition of small molecules for the binding of a known CA inhibitor (CAI) to the CA CTD, exhibited a signal-to-background ratio (S/B) > 10 and a Z' value > 0.9. In a pilot screen of three kinase inhibitor libraries containing 464 compounds, we identified one compound, TX-1918, as a low micromolecular inhibitor of the HIV-1 CA CTD-CAI interaction (IC50 = 3.81 μM) that also inhibited viral replication at moderate micromolar concentration (EC50 = 15.16 μM) and inhibited CA assembly in vitro. Based on the structure of TX-1918, an additional compound with an antiviral EC50 of 6.57 μM and cellular cytotoxicity CC50 of 102.55 μM was obtained from a compound similarity search. Thus, the HTRF-based assay has properties that are suitable for screening large compound libraries to identify novel anti-HIV-1 inhibitors targeting the CA CTD.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, The National Kunming High Level Biosafety Research Center for Nonhuman Primate, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, The National Kunming High Level Biosafety Research Center for Nonhuman Primate, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiao-Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, The National Kunming High Level Biosafety Research Center for Nonhuman Primate, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| |
Collapse
|
6
|
Bai C, Lin D, Mo Y, Lei J, Sun Y, Xie L, Yang X, Wei G. Influence of fullerenol on hIAPP aggregation: amyloid inhibition and mechanistic aspects. Phys Chem Chem Phys 2019; 21:4022-4031. [DOI: 10.1039/c8cp07501h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C60(OH)24inhibits hIAPP aggregation by suppressing the fibril-prone structure and destabilizes hIAPP protofibrils by binding to the amyloid core region.
Collapse
Affiliation(s)
- Cuiqin Bai
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Dongdong Lin
- Department of Microelectronic Science and Engineering Science Faculty of Science
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Yuxiang Mo
- College of Physical Science and Technology
- Guangxi Normal University
- 15 Yucai Road
- Guilin
- China
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Yunxiang Sun
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Luogang Xie
- College of Physics and Electronic Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 453002
- People's Republic of China
| | - Xinju Yang
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433
- People's Republic of China
| |
Collapse
|
7
|
Abstract
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.
Collapse
Affiliation(s)
- Marcus Thomas
- Computational Biology Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States of America. Joint Carnegie Mellon University/University of Pittsburgh Ph.D. Program in Computational Biology, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | | |
Collapse
|
8
|
Thenin-Houssier S, Valente ST. HIV-1 Capsid Inhibitors as Antiretroviral Agents. Curr HIV Res 2016; 14:270-82. [PMID: 26957201 DOI: 10.2174/1570162x14999160224103555] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The infectious human immunodeficiency virus (HIV) particle is characterized by a conical capsid that encloses the viral RNA genome. The capsid is essential for HIV-1 replication and plays crucial roles in both early and late stages of the viral life cycle. Early on, upon fusion of the viral and cellular membranes, the viral capsid is released into the host cell cytoplasm and dissociates in a process known as uncoating, tightly associated with the reverse transcription of the viral genome. During the late stages of viral replication, the Gag polyprotein, precursor of the capsid protein, assemble at the plasma membrane to form immature non-infectious viral particles. After a maturation step by the viral protease, the capsid assembles to form a fullerene-like conical shape characteristic of the mature infectious particle. Mutations affecting the uncoating process, or capsid assembly and maturation, have been shown to hamper viral infectivity. The key role of capsid in viral replication and the absence of approved drugs against this protein have promoted the development of antiretrovirals. Screening based on the inhibition of capsid assembly and virtual screening for molecules binding to the capsid have successfully identified a number of potential small molecule compounds. Unfortunately, none of these molecules is currently used in the clinic. CONCLUSION Here we review the discovery and the mechanism of action of the small molecules and peptides identified as capsid inhibitors, and discuss their therapeutic potential.
Collapse
Affiliation(s)
| | - Susana T Valente
- Department Immunology and Microbial Sciences, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
|
10
|
Kožíšek M, Štěpánek O, Parkan K, Berenguer Albiñana C, Pávová M, Weber J, Krӓusslich HG, Konvalinka J, Machara A. Synthesis and evaluation of 2-pyridinylpyrimidines as inhibitors of HIV-1 structural protein assembly. Bioorg Med Chem Lett 2016; 26:3487-90. [PMID: 27353536 DOI: 10.1016/j.bmcl.2016.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/28/2022]
Abstract
In an effort to identify an HIV-1 capsid assembly inhibitor with improved solubility and potency, we synthesized two series of pyrimidine analogues based on our earlier lead compound N-(4-(ethoxycarbonyl)phenyl)-2-(pyridine-4-yl)quinazoline-4-amine. In vitro binding experiments showed that our series of 2-pyridine-4-ylpyrimidines had IC50 values higher than 28μM. Our series of 2-pyridine-3-ylpyrimidines exhibited IC50 values ranging from 3 to 60μM. The congeners with a fluoro substituent introduced at the 4-N-phenyl moiety, along with a methyl at C-6, represent potent HIV capsid assembly inhibitors binding to the C-terminal domain of the capsid protein.
Collapse
Affiliation(s)
- Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Štěpánek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Kamil Parkan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Carlos Berenguer Albiñana
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Hans-Georg Krӓusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Aleš Machara
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| |
Collapse
|