1
|
Fougiaxis V, Barcherini V, Petrovic MM, Sierocki P, Warenghem S, Leroux F, Bou Karroum N, Petit-Cancelier F, Rodeschini V, Roche D, Deprez B, Deprez-Poulain R. First fragment-based screening identifies new chemotypes inhibiting ERAP1-metalloprotease. Eur J Med Chem 2024; 280:116926. [PMID: 39369482 DOI: 10.1016/j.ejmech.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) by small-molecules is being eagerly investigated for the treatment of various autoimmune diseases and in the field of immuno-oncology after its active involvement in antigen presentation and processing. Currently, ERAP1 inhibitors are at different stages of clinical development, which highlights its significance as a promising drug target. In the present work, we describe the first-ever successful identification of several ERAP1 inhibitors derived from a fragment-based screening approach. We applied an enzymatic activity assay to a large library of ∼3000 fragment entries in order to retrieve 32 hits. After a multi-faceted selection process, we prioritized 3 chemotypes for SAR optimization and strategic modifications provided 2 series (2-thienylacetic acid and rhodanine scaffolds) with improved analogues at the low micromolar range of ERAP1 inhibition. We report also evidence of selectivity against homologous aminopeptidase IRAP, combined with complementary in silico docking studies to predict the binding mode and site of inhibition. Our compounds can be the starting point for future fragment growing and rational drug development, incorporating new chemical modalities.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valentina Barcherini
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Milena M Petrovic
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Sierocki
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Nour Bou Karroum
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | | | - Vincent Rodeschini
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Didier Roche
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France.
| |
Collapse
|
2
|
Lammi C, Fassi EMA, Manenti M, Brambilla M, Conti M, Li J, Roda G, Camera M, Silvani A, Grazioso G. Computational Design, Synthesis, and Biological Evaluation of Diimidazole Analogues Endowed with Dual PCSK9/HMG-CoAR-Inhibiting Activity. J Med Chem 2023. [PMID: 37261954 DOI: 10.1021/acs.jmedchem.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates circulating cholesterol levels. Consequently, the PCSK9 inhibition is a valuable therapeutic approach for the treatment of hypercholesterolemia and cardiovascular diseases. In our studies, we discovered Rim13, a polyimidazole derivative reducing the protein-protein interaction between PCSK9 and LDLR with an IC50 of 1.6 μM. The computational design led to the optimization of the shape of the PCSK9/ligand complementarity, enabling the discovery of potent diimidazole derivatives. In fact, carrying out biological assays to fully characterize the cholesterol-lowering activity of the new analogues and using both biochemical and cellular techniques, compound Dim16 displayed improved PCSK9 inhibitory activity (IC50 0.9 nM). Interestingly, similar to other lupin-derived peptides and their synthetic analogues, some compounds in this series showed dual hypocholesterolemic activity since some of them complementarily inhibited the 3-hydroxy-3-methylglutaryl coenzyme A reductase.
Collapse
Affiliation(s)
- Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Enrico M A Fassi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco Manenti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 10, 20133 Milan, Italy
| | - Marta Brambilla
- Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy
| | - Maria Conti
- Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy
| | - Jianqiang Li
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marina Camera
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
- Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 10, 20133 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
3
|
Exploring the Antitubercular Activity of Anthranilic Acid Derivatives: From MabA (FabG1) Inhibition to Intrabacterial Acidification. Pharmaceuticals (Basel) 2023; 16:ph16030335. [PMID: 36986435 PMCID: PMC10057394 DOI: 10.3390/ph16030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, is responsible for the death of 1.5 million people each year and the number of bacteria resistant to the standard regimen is constantly increasing. This highlights the need to discover molecules that act on new M. tuberculosis targets. Mycolic acids, which are very long-chain fatty acids essential for M. tuberculosis viability, are synthesized by two types of fatty acid synthase (FAS) systems. MabA (FabG1) is an essential enzyme belonging to the FAS-II cycle. We have recently reported the discovery of anthranilic acids as MabA inhibitors. Here, the structure–activity relationships around the anthranilic acid core, the binding of a fluorinated analog to MabA by NMR experiments, the physico-chemical properties and the antimycobacterial activity of these inhibitors were explored. Further investigation of the mechanism of action in bacterio showed that these compounds affect other targets than MabA in mycobacterial cells and that their antituberculous activity is due to the carboxylic acid moiety which induces intrabacterial acidification.
Collapse
|
4
|
Vaas S, Zimmermann MO, Klett T, Boeckler FM. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. Drug Des Devel Ther 2023; 17:1247-1274. [PMID: 37128274 PMCID: PMC10148652 DOI: 10.2147/dddt.s406703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023] Open
Abstract
Introduction Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modifications to the backbone, and incorporation of unnatural amino acids. One approach previously established, is the use of halogenated aromatic amino acids. In principle, they are thereby enabled to form halogen bonds (XB). In this study, we focus on the -R-CF2X moiety (R = O, NHCO; X = Cl, Br) as an uncommon halogen bond donor. These groups enable more spatial variability in protein-protein interactions. The chosen approach via Fmoc-protected building blocks allows for the incorporation of these modified amino acids in peptides using solid-phase peptide synthesis. Results and Discussion Using a competitive fluorescence polarization assay to monitor binding to Mdm4, we demonstrate that a p53-derived peptide with Lys24Nle(εNHCOCF2X) exhibits an improved inhibition constant Ki compared to the unmodified peptide. Decreasing Ki values observed with the increasing XB capacity of the halogen atoms (F ≪ Cl < Br) indicates the formation of a halogen bond. By reducing the side chain length of Nle(εNHCOCF2X) to Abu(γNHCOCF2X) as control experiments and through quantum mechanical calculations, we suggest that the observed affinity enhancement is related to halogen bond-induced intramolecular stabilization of the α-helical binding mode of the peptide or a direct interaction with His54 in human Mdm4.
Collapse
Affiliation(s)
- Sebastian Vaas
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Markus O Zimmermann
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Theresa Klett
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Correspondence: Frank M Boeckler, Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8 (Haus B), Tübingen, D-72076, Germany, Tel +49 7071 29 74567, Fax +49 7071 29 5637, Email
| |
Collapse
|
5
|
Stahlecker J, Klett T, Schwer M, Jaag S, Dammann M, Ernst LN, Braun MB, Zimmermann MO, Kramer M, Lämmerhofer M, Stehle T, Coles M, Boeckler FM. Revisiting a challenging p53 binding site: a diversity-optimized HEFLib reveals diverse binding modes in T-p53C-Y220C. RSC Med Chem 2022; 13:1575-1586. [PMID: 36561072 PMCID: PMC9749929 DOI: 10.1039/d2md00246a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
The cellular tumor antigen p53 is a key component in cell cycle control. The mutation Y220C heavily destabilizes the protein thermally but yields a druggable crevice. We have screened the diversity-optimized halogen-enriched fragment library against T-p53C-Y220C with STD-NMR and DSF to identify hits, which we validated by 1H,15N-HSQC NMR. We could identify four hits binding in the Y220C cleft, one hit binding covalently and four hits binding to an uncharacterized binding site. Compound 1151 could be crystallized showing a flip of C220 and thus opening subsite 3. Additionally, 4482 was identified to alkylate cysteines. Data shows that the diversity-optimized HEFLib leads to multiple diverse hits. The identified scaffolds can be used to further optimize interactions with T-p53C-Y220C and increase thermal stability.
Collapse
Affiliation(s)
- Jason Stahlecker
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Theresa Klett
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Martin Schwer
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Simon Jaag
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Marcel Dammann
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Larissa N Ernst
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Michael B Braun
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 34 72076 Tübingen Germany
| | - Markus O Zimmermann
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Markus Kramer
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 34 72076 Tübingen Germany
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen Max-Planck-Ring 5 72076 Tübingen Germany
| | - Frank M Boeckler
- Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen Sand 14 72076 Tübingen Germany
| |
Collapse
|
6
|
Predicting Blood–Brain Barrier Permeation of Erlotinib and JCN037 by Molecular Simulation. J Membr Biol 2022; 256:147-157. [PMID: 36441253 DOI: 10.1007/s00232-022-00274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is a highly malignant primary brain tumor, and epidermal growth factor receptor (EGFR) is a well characterized biomaker on GBM. Treatment of GBM with EGFR inhibitors achieved limited efficacy due to low blood-brain barrier (BBB) permeability, and BBB-penetrant drugs are required. In this study, the BBB penetration of erlotinib and JN037 were studied using molecular dynamics method with explicit membrane model. The free energy profiles indicate that JCN037 has a lower central energy barrier than erlotinib, and it has a local minimum at lipid-water interface while erlotinib has not. Unconstrained MD simulations found that erlotinib prefers staying in water while JCN037 tends to interact with lipid molecules. Further analysis reveals that the Br atom of JCN037 plays an important role in its interaction with lipid molecules, and the adjacent F atom enhances the interaction of Br. The two flexible methoxyethoxy chains of erlotinib are responsible for its poor penetration. Our computational results agree well with the experimental results, providing useful information in the design and improvement of drugs with good BBB permeation.
Collapse
|
7
|
Fernández-Bachiller MI, Hwang S, Schembri ME, Lindemann P, Guberman M, Herziger S, Specker E, Matter H, Will DW, Czech J, Wagner M, Bauer A, Schreuder H, Ritter K, Urmann M, Wehner V, Sun H, Nazaré M. Probing Factor Xa Protein-Ligand Interactions: Accurate Free Energy Calculations and Experimental Validations of Two Series of High-Affinity Ligands. J Med Chem 2022; 65:13013-13028. [PMID: 36178213 DOI: 10.1021/acs.jmedchem.2c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accurate prediction of protein-ligand binding affinity belongs to one of the central goals in computer-based drug design. Molecular dynamics (MD)-based free energy calculations have become increasingly popular in this respect due to their accuracy and solid theoretical basis. Here, we present a combined study which encompasses experimental and computational studies on two series of factor Xa ligands, which enclose a broad chemical space including large modifications of the central scaffold. Using this integrated approach, we identified several new ligands with different heterocyclic scaffolds different from the previously identified indole-2-carboxamides that show superior or similar affinity. Furthermore, the so far underexplored terminal alkyne moiety proved to be a suitable non-classical bioisosteric replacement for the higher halogen-π aryl interactions. With this challenging example, we demonstrated the ability of the MD-based non-equilibrium free energy calculation approach for guiding crucial modifications in the lead optimization process, such as scaffold replacement and single-site modifications at molecular interaction hot spots.
Collapse
Affiliation(s)
| | - Songhwan Hwang
- Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| | - María Elena Schembri
- Medizinische Chemie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| | - Peter Lindemann
- Medizinische Chemie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| | - Mónica Guberman
- Medizinische Chemie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| | - Svenja Herziger
- Medizinische Chemie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| | - Edgar Specker
- Medizinische Chemie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| | - Hans Matter
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - David W Will
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Jörg Czech
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Michael Wagner
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Armin Bauer
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Herman Schreuder
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Kurt Ritter
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Matthias Urmann
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Volkmar Wehner
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark-Höchst, Building G878, 65926Frankfurt am Main, Germany
| | - Han Sun
- Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany.,Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623Berlin, Germany
| | - Marc Nazaré
- Medizinische Chemie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, 13125Berlin, Germany
| |
Collapse
|
8
|
Golani LK, Yeunus Mian M, Ahmed T, Pandey KP, Mondal P, Sharmin D, Rezvanian S, Witkin JM, Cook JM. Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies. Bioorg Med Chem Lett 2022; 62:128637. [PMID: 35218882 DOI: 10.1016/j.bmcl.2022.128637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/16/2022]
Abstract
The pharmacological actions exerted by benzodiazepines are dependent on the discrete α protein subunits of the γ-aminobutyric acid type A receptor (GABAA R). Recent developments via a cryo-EM structure of the α1β3γ2L GABAA R ion channel provide crucial insights into ligand efficacy and binding affinity at this subtype. We investigated the molecular interactions of diazepam and alprazolam bound GABAA R structures (6HUP and 6HUO) to determine key binding interaction domains. A halogen bond between the chlorine atoms of diazepam and alprazolam with the group on the backbone of the α1 histidine amino acid 102 is important to the positive allosteric modulatory actions of diazepam and alprazolam in the α1β3γ2L GABAA R ion channel. In order to gain insight into α subtype selectivity we designed and synthesized close structural analogs of diazepam and alprazolam. These compounds were then docked into the recently publish cryo-EM structures of GABAA Rs (6HUP and 6HUO). This modeling along with radio-ligand binding data resulted in the conclusion that the non-classical bioisosteric replacement of the chlorine atom at C7 with an ethinyl group (compound 5) resulted in an 11-fold gain in α5 binding selectivity over the α1 subtype. Moreover, the potency of compound 5 resulted in a ligand with less sedation than diazepam, while still maintaining the same anxiolytic potency. These modeling data extend our understanding of the structural requirements for α-subtype-selective compounds that can be utilized to achieve improved medical treatments. It is clear that the ethinyl group in place of a halogen atom decreases the affinity and efficacy of benzodiazepines and imidazodiazepines at α1 subtypes, which results in less sedation and ataxia.
Collapse
Affiliation(s)
- Lalit K Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kamal P Pandey
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Prithu Mondal
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sepideh Rezvanian
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M Witkin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN USA
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, Dahlke JR, Fell JB, Fischer JP, Gunn RJ, Hallin J, Laguer J, Lawson JD, Medwid J, Newhouse B, Nguyen P, O'Leary JM, Olson P, Pajk S, Rahbaek L, Rodriguez M, Smith CR, Tang TP, Thomas NC, Vanderpool D, Vigers GP, Christensen JG, Marx MA. Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS G12D Inhibitor. J Med Chem 2021; 65:3123-3133. [PMID: 34889605 DOI: 10.1021/acs.jmedchem.1c01688] [Citation(s) in RCA: 296] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of solid tumors. However, when compared to KRASG12C, selective inhibition of KRASG12D presents a significant challenge due to the requirement of inhibitors to bind KRASG12D with high enough affinity to obviate the need for covalent interactions with the mutant KRAS protein. Here, we report the discovery and characterization of the first noncovalent, potent, and selective KRASG12D inhibitor, MRTX1133, which was discovered through an extensive structure-based activity improvement and shown to be efficacious in a KRASG12D mutant xenograft mouse tumor model.
Collapse
Affiliation(s)
- Xiaolun Wang
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Shelley Allen
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - James F Blake
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Vickie Bowcut
- Mirati Therapeutics, San Diego, California 92121, United States
| | - David M Briere
- Mirati Therapeutics, San Diego, California 92121, United States
| | | | - Joshua R Dahlke
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Jay B Fell
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - John P Fischer
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Robin J Gunn
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Jill Hallin
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Jade Laguer
- Mirati Therapeutics, San Diego, California 92121, United States
| | - J David Lawson
- Mirati Therapeutics, San Diego, California 92121, United States
| | - James Medwid
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Brad Newhouse
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Phong Nguyen
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Jacob M O'Leary
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Peter Olson
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Spencer Pajk
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Lisa Rahbaek
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Mareli Rodriguez
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | | | - Tony P Tang
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | - Nicole C Thomas
- Mirati Therapeutics, San Diego, California 92121, United States
| | | | - Guy P Vigers
- Pfizer Boulder Research & Development, Boulder, Colorado 80301, United States
| | | | - Matthew A Marx
- Mirati Therapeutics, San Diego, California 92121, United States
| |
Collapse
|
10
|
Tsang JE, Urner LM, Kim G, Chow K, Baufeld L, Faull K, Cloughesy TF, Clark PM, Jung ME, Nathanson DA. Development of a Potent Brain-Penetrant EGFR Tyrosine Kinase Inhibitor against Malignant Brain Tumors. ACS Med Chem Lett 2020; 11:1799-1809. [PMID: 33062157 DOI: 10.1021/acsmedchemlett.9b00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is genetically altered in nearly 60% of glioblastoma tumors; however, tyrosine kinase inhibitors (TKIs) against EGFR have failed to show efficacy for patients with these lethal brain tumors. This failure is attributed to the inability of clinically tested EGFR TKIs to cross the blood-brain barrier (BBB) and achieve adequate pharmacological levels to inhibit various oncogenic forms of EGFR that drive glioblastoma. Through SAR analysis, we developed compound 5 (JCN037) from an anilinoquinazoline scaffold by ring fusion of the 6,7-dialkoxy groups to reduce the number of rotatable bonds and polar surface area and by introduction of an ortho-fluorine and meta-bromine on the aniline ring for improved potency and BBB penetration. Relative to the conventional EGFR TKIs erlotinib and lapatinib, JCN037 displayed potent activity against EGFR amplified/mutant patient-derived cell cultures, significant BBB penetration (2:1 brain-to-plasma ratio), and superior efficacy in an EGFR-driven orthotopic glioblastoma xenograft model.
Collapse
|
11
|
A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Med Chem 2020; 11:2491-2504. [PMID: 31633398 PMCID: PMC6803818 DOI: 10.4155/fmc-2019-0181] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: The p53 cancer mutation Y220C creates a conformationally unstable protein with a unique elongated surface crevice that can be targeted by molecular chaperones. We report the structure-guided optimization of the carbazole-based stabilizer PK083. Materials & methods: Biophysical, cellular and x-ray crystallographic techniques have been employed to elucidate the mode of action of the carbazole scaffolds. Results: Targeting an unoccupied subsite of the surface crevice with heterocycle-substituted PK083 analogs resulted in a 70-fold affinity increase to single-digit micromolar levels, increased thermal stability and decreased rate of aggregation of the mutant protein. PK9318, one of the most potent binders, restored p53 signaling in the liver cancer cell line HUH-7 with homozygous Y220C mutation. Conclusion: The p53-Y220C mutant is an excellent paradigm for the development of mutant p53 rescue drugs via protein stabilization. Similar rescue strategies may be applicable to other cavity-creating p53 cancer mutations.
Collapse
|
12
|
Tan YS, Mhoumadi Y, Verma CS. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. J Mol Cell Biol 2020; 11:306-316. [PMID: 30726928 PMCID: PMC6487789 DOI: 10.1093/jmcb/mjz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
The transcription factor p53 plays pivotal roles in numerous biological processes, including the suppression of tumours. The rich availability of biophysical data aimed at understanding its structure–function relationships since the 1990s has enabled the application of a variety of computational modelling techniques towards the establishment of mechanistic models. Together they have provided deep insights into the structure, mechanics, energetics, and dynamics of p53. In parallel, the observation that mutations in p53 or changes in its associated pathways characterize several human cancers has resulted in a race to develop therapeutic modulators of p53, some of which have entered clinical trials. This review describes how computational modelling has played key roles in understanding structural-dynamic aspects of p53, formulating hypotheses about domains that are beyond current experimental investigations, and the development of therapeutic molecules that target the p53 pathway.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore
| | - Yasmina Mhoumadi
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| |
Collapse
|
13
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
14
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
15
|
Padilla-Salinas R, Sun L, Anderson R, Yang X, Zhang S, Chen ZJ, Yin H. Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. J Org Chem 2020; 85:1579-1600. [PMID: 31829590 DOI: 10.1021/acs.joc.9b02666] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) (cGAS), a cytosolic DNA sensor, plays an important role in the type I interferon response. DNA from either invading microbes or self-origin triggers the enzymatic activity of cGAS. Aberrant activation of cGAS is associated with various autoimmune disorders. Only one selective probe exists for inhibiting cGAS in cells, while others are limited by their poor cellular activity or specificity, which underscores the urgency for discovering new cGAS inhibitors. Here, we describe the development of new small-molecule human cGAS (hcGAS) inhibitors (80 compounds synthesized) with high binding affinity in vitro and cellular activity. Our studies show CU-32 and CU-76 selectively inhibit the DNA pathway in human cells but have no effect on the RIG-I-MAVS or Toll-like receptor pathways. CU-32 and CU-76 represent a new class of hcGAS inhibitors with activity in cells and provide a new chemical scaffold for designing probes to study cGAS function and development of autoimmune therapeutics.
Collapse
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States
| | - Lijun Sun
- Department of Molecular Biology , Howard Hughes Medical Institute , Department of Immunology , and Animal Resource Center , University of Texas Southwestern Medical Center , Dallas 75390-9148 , Texas , United States
| | - Rachel Anderson
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States
| | - Xikang Yang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| | - Zhijian J Chen
- Department of Molecular Biology , Howard Hughes Medical Institute , Department of Immunology , and Animal Resource Center , University of Texas Southwestern Medical Center , Dallas 75390-9148 , Texas , United States
| | - Hang Yin
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States.,School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| |
Collapse
|
16
|
Padilla-Salinas R, Anderson R, Sakaniwa K, Zhang S, Nordeen P, Lu C, Shimizu T, Yin H. Discovery of Novel Small Molecule Dual Inhibitors Targeting Toll-Like Receptors 7 and 8. J Med Chem 2019; 62:10221-10244. [DOI: 10.1021/acs.jmedchem.9b01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rachel Anderson
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| | - Patrick Nordeen
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chuanjun Lu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| |
Collapse
|
17
|
Costa PJ, Nunes R, Vila-Viçosa D. Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin Drug Discov 2019; 14:805-820. [PMID: 31131651 DOI: 10.1080/17460441.2019.1619692] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Halogens have a prominent role in drug design. Often used as a mean to improve ADME properties, they are also becoming a tool in protein-ligand recognition given their ability to form a non-covalent interaction, termed halogen bond, where halogens act as electrophilic species interacting with electron-rich partners. Rational drug design of halogen-bonding lead molecules requires an accurate description of halocarbon-protein complexes by computational tools though not all methods are able to tackle this non-covalent interaction. Areas covered: The authors present a review of computational methodologies that can be used to properly describe halogen bonds in the context of protein-ligand complexes, providing also insights on how these methods can be used in the context of computer-aided drug design. Expert opinion: Although in the last few years many computational tools, ranging from fast screening methods to the more expensive QM calculations, have been developed to tackle the halogen bonding phenomenon, they are not yet standard in the literature. This will eventually change as official software distributions are including support for halogen bonding in their methods. Tackling desolvation of halogenated species seems to be a good strategy to improve the accuracy of computational methods, that will be more commonly used prior to laboratory work in the future.
Collapse
Affiliation(s)
- Paulo J Costa
- a Centro de Quı́mica e Bioquı́mica, Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências da Universidade de Lisboa, Campo Grande , Lisboa , Portugal.,b University of Lisboa, Faculty of Sciences , BioISI - Biosystems & Integrative Sciences Institute , Lisboa , Portugal
| | - Rafael Nunes
- a Centro de Quı́mica e Bioquı́mica, Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências da Universidade de Lisboa, Campo Grande , Lisboa , Portugal.,b University of Lisboa, Faculty of Sciences , BioISI - Biosystems & Integrative Sciences Institute , Lisboa , Portugal
| | - Diogo Vila-Viçosa
- a Centro de Quı́mica e Bioquı́mica, Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências da Universidade de Lisboa, Campo Grande , Lisboa , Portugal.,b University of Lisboa, Faculty of Sciences , BioISI - Biosystems & Integrative Sciences Institute , Lisboa , Portugal
| |
Collapse
|
18
|
Yuan Q, Gong W, Ye Y, Liu J, Lin Y, Chen C, Zhang H, Li P, Cheng W, Wei X, Liang C. Construction of Pd/BiOCl Catalyst for Highly‐selective Synthesis of Benzoin Ethyl Ether by Chlorine Promoted Coupling Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qinglin Yuan
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Wanbing Gong
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Chun Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| | - Haimin Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| | - Weiren Cheng
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei 230029 China
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology Centre for Environmental and Energy Nanomaterials CAS Centre for Excellence in Nanoscience, Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 China
| |
Collapse
|
19
|
Thomas NS, George K, Selvam AAA. Troxerutin subdues hepatic tumorigenesis via disrupting the MDM2-p53 interaction. Food Funct 2019; 9:5336-5349. [PMID: 30259932 DOI: 10.1039/c8fo01111g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer death worldwide that lacks proper medical prognosis and treatment. In the present study, the anti-tumoral potential of troxerutin (TX), an ethnomedicine, was examined in relation to its effects on the promoter 2-acetylaminofluorene (2-AAF) in N-nitrosodiethylamine (NDEA) initiated HCC, as compared to its effects on HCC induced by NDEA alone. Liver samples from each experimental group were collected and evaluated for histological, biochemical and cellular characterization. The protein expressions of apoptotic and cell proliferation markers were determined via immunohistochemistry and western blotting. Molecular docking was also performed to delineate the inhibitory mechanism of TX on HCC. The results show that only higher doses of TX showed a significant reduction in the incidence of hepatic nodule formation, and they also counteracted NDEA plus 2-AAF induced alterations in the enzymic status. The frequencies of glutathione-S-transferase and proliferating cell nuclear antigen, markers of S phase progression, were markedly reduced during TX treatment. TX also modulated the imbalance in the MDM2-p53 interaction. The molecular docking results confirmed the interaction of TX with the upstream kinases that regulate apoptosis. This study provides evidence that a copious dose of TX is required to counteract the differential mitoinhibitory effect of 2-AAF in NDEA initiated hepatomas, and TX exhibits an anti-tumoral effect via suppressing oxidative stress, regulating liver function enzymes, inhibiting inflammatory responses and modulating MDM2-p53 interactions, thus inducing apoptosis, and thereby suggesting that TX may provide promising therapeutic effects for the chemoprevention of HCC.
Collapse
Affiliation(s)
- Nisha Susan Thomas
- Department of Biochemistry and Biotechnology, Annamalai University, Tamil Nadu, India.
| | | | | |
Collapse
|
20
|
Müller C, Farkas R, Borgna F, Schmid RM, Benešová M, Schibli R. Synthesis, Radiolabeling, and Characterization of Plasma Protein-Binding Ligands: Potential Tools for Modulation of the Pharmacokinetic Properties of (Radio)Pharmaceuticals. Bioconjug Chem 2017; 28:2372-2383. [DOI: 10.1021/acs.bioconjchem.7b00378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristina Müller
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland
- Department
of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1-5/10, 8093 Zurich, Switzerland
| | - Renáta Farkas
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland
| | - Francesca Borgna
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padova, Italy
| | - Raffaella M. Schmid
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland
| | - Martina Benešová
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland
- Department
of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1-5/10, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland
- Department
of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Kelly J, Amor-Coarasa A, Nikolopoulou A, Kim D, Williams C, Ponnala S, Babich JW. Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging. Eur J Nucl Med Mol Imaging 2016; 44:647-661. [PMID: 27847991 PMCID: PMC5323493 DOI: 10.1007/s00259-016-3556-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/19/2016] [Indexed: 01/18/2023]
Abstract
Purpose Current clinical imaging of PSMA-positive prostate cancer by positron emission tomography (PET) mainly features 68Ga-labeled tracers, notably [68Ga]Ga-PSMA-HBED-CC. The longer half-life of fluorine-18 offers significant advantages over Ga-68, clinically and logistically. We aimed to develop high-affinity PSMA inhibitors labeled with fluorine-18 as alternative tracers for prostate cancer. Methods Six triazolylphenyl ureas and their alkyne precursors were synthesized from the Glu-urea-Lys PSMA binding moiety. PSMA affinity was determined in a competitive binding assay using LNCaP cells. The [18F]triazoles were isolated following a Cu(I)-catalyzed click reaction between the alkynes and [18F]fluoroethylazide. The 18F-labeled compounds were evaluated in nude mice bearing LNCaP tumors and compared to [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL. Biodistribution studies of the two tracers with the highest imaged-derived tumor uptake and highest PSMA affinity were undertaken at 1 h, 2 h and 4 h post-injection (p.i.), and co-administration of PMPA was used to determine whether uptake was PSMA-specific. Results F-18-labeled triazolylphenyl ureas were prepared with a decay-corrected RCY of 20–40 %, >98 % radiochemical and chemical purity, and specific activity of up to 391 GBq/μmol. PSMA binding (IC50) ranged from 3–36 nM. The position of the triazole influenced tumor uptake (3 > 4 > 2), and direct conjugation of the triazole with the phenylurea moiety was preferred to insertion of a spacer group. Image-derived tumor uptake ranged from 6–14 %ID/g at 2 h p.i., the time of maximum tumor uptake; uptake of [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL was 5–6 %ID/g at 1–3 h p.i., the time of maximum tumor uptake. Biodistribution studies of the two most promising compounds gave maximum tumor uptakes of 10.9 ± 1.0 % and 14.3 ± 2.5 %ID/g, respectively, as compared to 6.27 ± 1.44 %ID/g for [68Ga]Ga-PSMA-HBED-CC. Conclusions Six [18F]triazolylphenyl ureas were prepared in good radiochemical yield. Compounds showed PSMA-specific uptake in LNCaP tumors as high as 14 % ID/g, more than a 2-fold increase over [68Ga]Ga-PSMA-HBED-CC. The facile and high-yielding radiosynthesis of these 18F-labeled triazoles as well as their promising in vitro and in vivo characteristics make them worthy of clinical development for PET imaging of prostate cancer. Electronic supplementary material The online version of this article (doi:10.1007/s00259-016-3556-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Kelly
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 East 69th Street, New York, NY, 10021, USA
| | - Alejandro Amor-Coarasa
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 East 69th Street, New York, NY, 10021, USA
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 East 69th Street, New York, NY, 10021, USA.,Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Dohyun Kim
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Clarence Williams
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 East 69th Street, New York, NY, 10021, USA
| | - Shashikanth Ponnala
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 East 69th Street, New York, NY, 10021, USA
| | - John W Babich
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 East 69th Street, New York, NY, 10021, USA. .,Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, 10021, USA. .,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
22
|
Zimmermann MO, Lange A, Zahn S, Exner TE, Boeckler FM. Using Surface Scans for the Evaluation of Halogen Bonds toward the Side Chains of Aspartate, Asparagine, Glutamate, and Glutamine. J Chem Inf Model 2016; 56:1373-83. [DOI: 10.1021/acs.jcim.6b00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus O. Zimmermann
- Laboratory
for Molecular Design and Pharmaceutical Biophysics, Department of
Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Center
for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Sand 1, 72076 Tübingen, Germany
| | - Andreas Lange
- Laboratory
for Molecular Design and Pharmaceutical Biophysics, Department of
Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Center
for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Sand 1, 72076 Tübingen, Germany
| | - Stefan Zahn
- Physikalisch-Chemisches
Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring
17, 35392 Gießen, Germany
| | - Thomas E. Exner
- Laboratory
for Molecular Design and Pharmaceutical Biophysics, Department of
Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Center
for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Sand 1, 72076 Tübingen, Germany
| | - Frank M. Boeckler
- Laboratory
for Molecular Design and Pharmaceutical Biophysics, Department of
Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Center
for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Sand 1, 72076 Tübingen, Germany
| |
Collapse
|