1
|
Zeng T, Wu Q, Liu Y, Qi Q, Shen W, Gu W, Zhang Y, Xiong W, Xie Z, Qi X, Tian T, Zhou X. Unraveling the Cleavage Reaction of Hydroxylamines with Cyclopropenones Considering Biocompatibility. J Am Chem Soc 2024; 146:35077-35089. [PMID: 39660762 DOI: 10.1021/jacs.4c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
We develop a latent biocompatible cleavage reaction involving the hitherto unexplored interaction between hydroxylamines and cyclopropenones. Our study addresses the regioselectivity challenges commonly observed in asymmetric cyclopropenone transformations, substantiated by variations in substrate, Density Functional Theory calculations, and in situ NMR analysis. This reaction is characterized by high efficiency, broad substrate scope, stability, latent biocompatibility, and mild reaction conditions. Significantly, it facilitates fluorescence activation and functions as a controlled release mechanism for prodrugs, showing great promise in biological assays. Our success in achieving the controlled release of nitrogen mustard in HeLa cells underscores its potential application in cellular contexts. Additionally, we introduce a simple and highly efficient method for synthesizing α, β-substituted pentenolides, applicable to a variety of substrates. Moreover, we extend this cleavage reaction to the CRISPR-Cas9 system, achieving precise, on-demand regulation of guide RNA activity. The introduction of this cleavage reaction offers a promising tool for biochemical research and biotechnological applications.
Collapse
Affiliation(s)
- Tianying Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Quan Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongjie Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Gu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhongpao Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024; 35:1699-1710. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
3
|
Miura A, Manabe Y, Suzuki KGN, Shomura H, Okamura S, Shirakawa A, Yano K, Miyake S, Mayusumi K, Lin CC, Morimoto K, Ishitobi J, Nakase I, Arai K, Kobayashi S, Ishikawa U, Kanoh H, Miyoshi E, Yamaji T, Kabayama K, Fukase K. De Novo Glycan Display on Cell Surfaces Using HaloTag: Visualizing the Effect of the Galectin Lattice on the Lateral Diffusion and Extracellular Vesicle Loading of Glycosylated Membrane Proteins. J Am Chem Soc 2024; 146:22193-22207. [PMID: 38963258 DOI: 10.1021/jacs.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.
Collapse
Affiliation(s)
- Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroki Shomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Soichiro Okamura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Mayusumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenta Morimoto
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jojiro Ishitobi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenta Arai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Ushio Ishikawa
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Zhao J, Tang Z, Selvaraju M, Johnson KA, Douglas JT, Gao PF, Petrassi HM, Wang MZ, Wang J. Cellular Target Deconvolution of Small Molecules Using a Selection-Based Genetic Screening Platform. ACS CENTRAL SCIENCE 2022; 8:1424-1434. [PMID: 36313155 PMCID: PMC9615120 DOI: 10.1021/acscentsci.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 05/04/2023]
Abstract
Small-molecule drug target identification is an essential and often rate-limiting step in phenotypic drug discovery and remains a major challenge. Here, we report a novel platform for target identification of activators of signaling pathways by leveraging the power of a clustered regularly interspaced short palindromic repeats (CRISPR) knockout library. This platform links the expression of a suicide gene to the small-molecule-activated signaling pathway to create a selection system. With this system, loss-of-function screening using a CRISPR single-guide (sg) RNA library positively enriches cells in which the target has been knocked out. The identities of the drug targets and other essential genes required for the activity of small molecules of interest are then uncovered by sequencing. We tested this platform on BDW568, a newly discovered type-I interferon signaling activator, and identified stimulator of interferon genes (STING) as its target and carboxylesterase 1 (CES1) to be a key metabolizing enzyme required to activate BDW568 for target engagement. The platform we present here can be a general method applicable for target identification for a wide range of small molecules that activate different signaling pathways.
Collapse
Affiliation(s)
- Junxing Zhao
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Zhichao Tang
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Manikandan Selvaraju
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kristen A. Johnson
- Calibr,
Scripps Research Institute, La Jolla, California 92037, United States
| | - Justin T. Douglas
- Nuclear
Magnetic Resonance Laboratory, University
of Kansas, Lawrence, Kansas 66047, United States
| | - Philip F. Gao
- Protein
Production Group, University of Kansas, Lawrence, Kansas 66047, United States
| | - H. Michael Petrassi
- Calibr,
Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael Zhuo Wang
- Department
of Pharmaceutical Chemistry, University
of Kansas, Lawrence, Kansas 66047, United States
| | - Jingxin Wang
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
5
|
Garcia-Peiro JI, Bonet-Aleta J, Santamaria J, Hueso JL. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev 2022; 51:7662-7681. [PMID: 35983786 DOI: 10.1039/d2cs00518b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum nanoparticles (Pt NPs) have a well-established role as a classic heterogeneous catalyst. Also, Pt has traditionally been employed as a component of organometallic drug formulations for chemotherapy. However, a new role in cancer therapy is emerging thanks to its outstanding catalytic properties, enabling novel approaches that are surveyed in this review. Herein, we critically discuss results already obtained and attempt to ascertain future perspectives for Pt NPs as catalysts able to modify key processes taking place in the tumour microenvironment (TME). In addition, we explore relevant parameters affecting the cytotoxicity, biodistribution and clearance of Pt nanosystems. We also analyze pros and cons in terms of biocompatibility and potential synergies that emerge from combining the catalytic capabilities of Pt with other agents such as co-catalysts, external energy sources (near-infrared light, X-ray, electric currents) and conventional therapies.
Collapse
Affiliation(s)
- Jose I Garcia-Peiro
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Bonet-Aleta
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
6
|
Mishra PK, Kang MG, Lee H, Kim S, Choi S, Sharma N, Park CM, Ko J, Lee C, Seo JK, Rhee HW. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem Sci 2022; 13:955-966. [PMID: 35211260 PMCID: PMC8790779 DOI: 10.1039/d1sc04871f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
We developed a proximity photo-crosslinking method (Spotlight) with a 4-azido-N-ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled. Using Spotlight, we further identified the host interactome of SARS-CoV-2 nucleocapsid (N) protein, which is essential for viral genome assembly. Mass analysis of the VL1-crosslinked product of N-HaloTag in HEK293T cells showed that RNA-binding proteins in stress granules were exclusively enriched in the cross-linked samples. These results tell that our method can reveal the interactome of protein of interest within a short distance in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Subin Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Nirmali Sharma
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- School of Biological Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
7
|
Rodríguez J, Pérez-González C, Martínez-Calvo M, Mosquera J, Mascareñas JL. Deactivation of a dimeric DNA-binding peptide through a palladium-mediated self-immolative cleavage. RSC Adv 2022; 12:3500-3504. [PMID: 35425354 PMCID: PMC8979313 DOI: 10.1039/d1ra09180h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
Herein, we describe an approach for the on-demand disassembly of dimeric peptides using a palladium-mediated cleavage of a designed self-immolative linker. The utility of the strategy is demonstrated for the case of dimeric basic regions of bZIP transcription factors. While the dimer binds designed DNA sequences with good affinities, the peptide-DNA complex can be readily dismounted by addition of palladium reagents that trigger the cleavage of the spacer, and the release of unfunctional monomeric peptides.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Cibrán Pérez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Miguel Martínez-Calvo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
8
|
Wang J, Wang X, Fan X, Chen PR. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. ACS CENTRAL SCIENCE 2021; 7:929-943. [PMID: 34235254 PMCID: PMC8227596 DOI: 10.1021/acscentsci.1c00124] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/02/2023]
Abstract
Bioorthogonal cleavage chemistry has been rapidly emerging as a powerful tool for manipulation and gain-of-function studies of biomolecules in living systems. While the initial bond formation-centered bioorthogonal reactions have been widely adopted for labeling, tracing, and capturing biomolecules, the newly developed bond cleavage-enabled bioorthogonal reactions have opened new possibilities for rescuing small molecules as well as biomacromolecules in living systems, allowing multidimensional controls over biological processes in vitro and in vivo. In this Outlook, we first summarized the development and applications of bioorthogonal cleavage reactions (BCRs) that restore the functions of chemical structures as well as more complex networks, including the liberation of prodrugs, release of bioconjugates, and in situ reactivation of intracellular proteins. As we embarked on this fruitful progress, we outlined the unmet scientific needs and future directions along this exciting avenue. We believe that the potential of BCRs will be further unleashed when combined with other frontier technologies, such as genetic code expansion and proximity-enabled chemical labeling.
Collapse
Affiliation(s)
- Jie Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xin Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Peking−Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Adeola HA, Bano A, Vats R, Vashishtha A, Verma D, Kaushik D, Mittal V, Rahman MH, Najda A, Albadrani GM, Sayed AA, Farouk SM, Hassanein EHM, Akhtar MF, Saleem A, Abdel-Daim MM, Bhardwaj R. Bioactive compounds and their libraries: An insight into prospective phytotherapeutics approach for oral mucocutaneous cancers. Biomed Pharmacother 2021; 141:111809. [PMID: 34144454 DOI: 10.1016/j.biopha.2021.111809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral mucocutaneous cancers (OMCs) are cancers that affect both the oral mucosa and perioral cutaneous structures. Common OMCs are squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and malignant melanoma (MM). Anatomical similarities and conventions which categorizes these lesions blur the magnitude of OMCs in diverse populations. The burden of OMC is high in the sub-Saharan Africa and Indian subcontinents, and the cost of management is prohibitive in the resource-limited, developing world. Hence, there is a pressing demand for the use of cost-effective in silico approaches to identify diagnostic tools and treatment targets for diseases with high burdens in these regions. Due to their ubiquitousness and accessibility, the use of therapeutic efficacy of plant bioactive compounds in the management of OMC is both appropriate and plausible. Furthermore, screening known mechanistic disease targets with well annotated plant bioactive compound libraries is poised to improve the routine management of OMCs provided that the requisite access to database resources are available and accessible. Using natural products minimizes the side effects and morbidities associated with conventional therapies. The development of innovative treatments approaches would tremendously benefit the African and Indian populace and reduce the mortalities associated with OMCs in the developing world. Hence, we discuss herein, the potential benefits, opportunities and challenges of using bioactive compound libraries in the management of OMCs.
Collapse
Affiliation(s)
- Henry A Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa; Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Amit Vashishtha
- Deptartment Of Botany, Sri Venkateswara college, University of Delhi, India.
| | | | - Deepak Kaushik
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, 124001, India.
| | - Vineet Mittal
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, 124001, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Sameh M Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
10
|
Abstract
HaloTag is a modified haloalkane dehalogenase used for many applications in chemical biology including protein purification, cell-based imaging, and cytosolic penetration assays. While working with purified, recombinant HaloTag protein, we discovered that HaloTag forms an internal disulfide bond under oxidizing conditions. In this work, we describe this internal disulfide formation and the conditions under which it occurs, and we identify the relevant cysteine residues. Further, we develop a mutant version of HaloTag, HaloTag8, that maintains activity while avoiding internal disulfide formation altogether. While there is no evidence that HaloTag is prone to disulfide formation in intracellular environments, researchers using recombinant HaloTag, HaloTag expressed on the cell surface, or HaloTag in the extracellular space might consider using HaloTag8 to avoid intramolecular disulfide formation.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Friedman Ohana R, Levin S, Hurst R, Rosenblatt MM, Zimmerman K, Machleidt T, Wood KV, Kirkland TA. Streamlined Target Deconvolution Approach Utilizing a Single Photoreactive Chloroalkane Capture Tag. ACS Chem Biol 2021; 16:404-413. [PMID: 33543920 DOI: 10.1021/acschembio.0c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identification of physiologically relevant targets for lead compounds emerging from drug discovery screens is often the rate-limiting step toward understanding their mechanism of action and potential for undesired off-target effects. To this end, we developed a streamlined chemical proteomic approach utilizing a single, photoreactive cleavable chloroalkane capture tag, which upon attachment to bioactive compounds facilitates selective isolation of their respective cellular targets for subsequent identification by mass spectrometry. When properly positioned, the tag does not significantly affect compound potency and membrane permeability, allowing for binding interactions with the tethered compound (probe) to be established within intact cells under physiological conditions. Subsequent UV-induced covalent photo-cross-linking "freezes" the interactions between the probe and its cellular targets and prevents their dissociation upon cell lysis. Targets cross-linked to the capture tag are then efficiently enriched through covalent capture onto HaloTag coated beads and subsequent selective chemical release from the solid support. The tag's built-in capability for selective enrichment eliminates the need for ligation of a capture tag, thereby simplifying the workflow and reducing variability introduced through additional operational steps. At the same time, the capacity for adequate cross-linking without structural optimization permits modular assembly of photoreactive chloroalkane probes, which reduces the burden of customized chemistry. Using three model compounds, we demonstrate the capability of this approach to identify known and novel cellular targets, including those with low affinity and/or low abundance as well as membrane targets with several transmembrane domains.
Collapse
Affiliation(s)
| | - Sergiy Levin
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Robin Hurst
- Promega Corporation, 2800 Woods Hollow, Fitchburg, Wisconsin 53711, United States
| | | | - Kristopher Zimmerman
- Promega Corporation, 2800 Woods Hollow, Fitchburg, Wisconsin 53711, United States
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow, Fitchburg, Wisconsin 53711, United States
| | - Keith V. Wood
- Promega Corporation, 2800 Woods Hollow, Fitchburg, Wisconsin 53711, United States
| | - Thomas A. Kirkland
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, California 93401, United States
| |
Collapse
|
12
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
13
|
Lukomski L, Pohorilets I, Koide K. Third-Generation Method for High-Throughput Quantification of Trace Palladium by Color or Fluorescence. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lydia Lukomski
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Latocheski E, Dal Forno GM, Ferreira TM, Oliveira BL, Bernardes GJL, Domingos JB. Mechanistic insights into transition metal-mediated bioorthogonal uncaging reactions. Chem Soc Rev 2020; 49:7710-7729. [DOI: 10.1039/d0cs00630k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review assesses the mechanistic aspects of transition metal-mediated uncaging reactions, with the goal of aiding the rational development of new caging groups/catalysts for chemical biology and drug-delivery applications.
Collapse
Affiliation(s)
- Eloah Latocheski
- LaCBio – Laboratory of Biomimetic Catalysis
- Department of Chemistry
- Federal University of Santa Catarina – UFSC
- 88040-900 Florianópolis
- Brazil
| | - Gean M. Dal Forno
- LaCBio – Laboratory of Biomimetic Catalysis
- Department of Chemistry
- Federal University of Santa Catarina – UFSC
- 88040-900 Florianópolis
- Brazil
| | - Thuany M. Ferreira
- LaCBio – Laboratory of Biomimetic Catalysis
- Department of Chemistry
- Federal University of Santa Catarina – UFSC
- 88040-900 Florianópolis
- Brazil
| | - Bruno L. Oliveira
- Department of Chemistry
- University of Cambridge
- CB2 1EW Cambridge
- UK
- Instituto de Medicina Molecular
| | - Gonçalo J. L. Bernardes
- Department of Chemistry
- University of Cambridge
- CB2 1EW Cambridge
- UK
- Instituto de Medicina Molecular
| | - Josiel B. Domingos
- LaCBio – Laboratory of Biomimetic Catalysis
- Department of Chemistry
- Federal University of Santa Catarina – UFSC
- 88040-900 Florianópolis
- Brazil
| |
Collapse
|
15
|
Peraro L, Deprey KL, Moser MK, Zou Z, Ball HL, Levine B, Kritzer JA. Cell Penetration Profiling Using the Chloroalkane Penetration Assay. J Am Chem Soc 2018; 140:11360-11369. [PMID: 30118219 PMCID: PMC6205923 DOI: 10.1021/jacs.8b06144] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotherapeutics are a promising class of molecules in drug discovery, but they are often limited to extracellular targets due to their poor cell penetration. High-throughput cell penetration assays are required for the optimization of biotherapeutics for enhanced cell penetration. We developed a HaloTag-based assay called the chloroalkane penetration assay (CAPA), which is quantitative, high-throughput, and compartment-specific. We demonstrate the ability of CAPA to profile extent of cytosolic penetration with respect to concentration, presence of serum, temperature, and time. We also used CAPA to investigate structure-penetration relationships for bioactive stapled peptides and peptides fused to cell-penetrating sequences. CAPA is not only limited to measuring cytosolic penetration. Using a cell line where HaloTag is localized to the nucleus, we show quantitative measurement of nuclear penetration. Going forward, CAPA will be a valuable method for measuring and optimizing the cell penetration of biotherapeutics.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, MA 02155
| | | | | | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75230
| | - Haydn L. Ball
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75230
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75230
| | | |
Collapse
|
16
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
17
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
18
|
Target Identification Using Cell Permeable and Cleavable Chloroalkane Derivatized Small Molecules. Methods Mol Biol 2018; 1647:91-108. [PMID: 28808997 DOI: 10.1007/978-1-4939-7201-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An important aspect for gaining functional insight into the activity of small molecules revealed through phenotypic screening is the identification of their interacting proteins. Yet, isolating and validating these interacting proteins remains difficult. Here, we present a new approach utilizing a chloroalkane (CA) moiety capture handle, which can be chemically attached to small molecules to isolate their respective protein targets. Derivatization of small molecules with the CA moiety has been shown to not significantly impact their cell permeability or potency, allowing for phenotypic validation of the derivatized small molecule prior to capture. The retention of cell permeability also allows for treatment of live cells with the derivatized small molecule and the CA moiety enables rapid covalent capture onto HaloTag coated magnetic beads. Additionally, several options are available for the elution of interacting proteins, including chemical cleavage of the CA moiety, competitive elution using excess unmodified small molecule, or sodium dodecyl sulfate (SDS) elution. These features taken together yield a highly robust and efficient process for target identification, including capture of weak or low abundance interactors.
Collapse
|
19
|
Stenton BJ, Oliveira BL, Matos MJ, Sinatra L, Bernardes GJL. A thioether-directed palladium-cleavable linker for targeted bioorthogonal drug decaging. Chem Sci 2018; 9:4185-4189. [PMID: 29780549 PMCID: PMC5941270 DOI: 10.1039/c8sc00256h] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/02/2018] [Indexed: 01/24/2023] Open
Abstract
We describe the development of a bifunctional linker that simultaneously allows site-specific protein modification and palladium-mediated bioorthogonal decaging.
We describe the development of a bifunctional linker that simultaneously allows site-specific protein modification and palladium-mediated bioorthogonal decaging. This was enabled by a thioether binding motif in the propargyl carbamate linker and a readily available palladium complex. We demonstrate the efficiency of this reaction by controlled drug release from a PEGylated doxorubicin prodrug in cancer cells. The linker can be easily installed into cysteine bearing proteins which we demonstrated for the construction of an anti-HER2 nanobody–drug conjugate. Targeted delivery of the nanobody drug conjugate showed effective cell killing in HER2+ cells upon palladium-mediated decaging.
Collapse
Affiliation(s)
- Benjamin J Stenton
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Bruno L Oliveira
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Maria J Matos
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Laura Sinatra
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK . .,Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , 1649-028 Lisboa , Portugal .
| |
Collapse
|
20
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 697] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
21
|
Podewin T, Ast J, Broichhagen J, Fine NHF, Nasteska D, Leippe P, Gailer M, Buenaventura T, Kanda N, Jones BJ, M’Kadmi C, Baneres JL, Marie J, Tomas A, Trauner D, Hoffmann-Röder A, Hodson DJ. Conditional and Reversible Activation of Class A and B G Protein-Coupled Receptors Using Tethered Pharmacology. ACS CENTRAL SCIENCE 2018; 4:166-179. [PMID: 29532016 PMCID: PMC5832994 DOI: 10.1021/acscentsci.7b00237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 05/21/2023]
Abstract
Understanding the activation and internalization of G protein-coupled receptors (GPCRs) using conditional approaches is paramount to developing new therapeutic strategies. Here, we describe the design, synthesis, and testing of ExONatide, a benzylguanine-linked peptide agonist of the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR required for maintenance of glucose levels in humans. ExONatide covalently binds to SNAP-tagged GLP-1R-expressing cells, leading to prolonged cAMP generation, Ca2+ rises, and intracellular retention of the receptor. These effects were readily switched OFF following cleavage of the introduced disulfide bridge using the cell-permeable reducing agent beta-mercaptoethanol (BME). A similar approach could be extended to a class A GPCR using GhrelON, a benzylguanine-linked peptide agonist of the growth hormone secretagogue receptor 1a (GHS-R1a), which is involved in food intake and growth. Thus, ExONatide and GhrelON allow SNAP-tag-directed activation of class A and B GPCRs involved in gut hormone signaling in a reversible manner. This tactic, termed reductively cleavable agONist (RECON), may be useful for understanding GLP-1R and GHS-R1a function both in vitro and in vivo, with applicability across GPCRs.
Collapse
Affiliation(s)
- Tom Podewin
- Department
of Chemistry and Center for Integrated Protein Science, LMU Munich, 81377 Munich, Germany
| | - Julia Ast
- Institute
of Metabolism and Systems Research (IMSR), University of Birmingham, B15 2TT, Birmingham, United Kingdom
- Centre
for Endocrinology, Diabetes and Metabolism, Birmingham
Health Partners, Birmingham, B15 2TH, United Kingdom, and COMPARE University of Birmingham and University of Nottingham
Midlands
| | - Johannes Broichhagen
- Department
of Chemistry and Center for Integrated Protein Science, LMU Munich, 81377 Munich, Germany
| | - Nicholas H. F. Fine
- Institute
of Metabolism and Systems Research (IMSR), University of Birmingham, B15 2TT, Birmingham, United Kingdom
- Centre
for Endocrinology, Diabetes and Metabolism, Birmingham
Health Partners, Birmingham, B15 2TH, United Kingdom, and COMPARE University of Birmingham and University of Nottingham
Midlands
| | - Daniela Nasteska
- Institute
of Metabolism and Systems Research (IMSR), University of Birmingham, B15 2TT, Birmingham, United Kingdom
- Centre
for Endocrinology, Diabetes and Metabolism, Birmingham
Health Partners, Birmingham, B15 2TH, United Kingdom, and COMPARE University of Birmingham and University of Nottingham
Midlands
| | - Philipp Leippe
- Department
of Chemistry and Center for Integrated Protein Science, LMU Munich, 81377 Munich, Germany
| | - Manuel Gailer
- Department
of Chemistry and Center for Integrated Protein Science, LMU Munich, 81377 Munich, Germany
| | - Teresa Buenaventura
- Section
of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Nisha Kanda
- Section
of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Ben J. Jones
- Section
of Investigative Medicine, Division of Diabetes, Endocrinology and
Metabolism, Imperial College London, London, W12 0NN, United Kingdom
| | - Celine M’Kadmi
- Institut des Biomolécules
Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM,
Faculté de Pharmacie, 15 Avenue
Charles Flahault, BP 14491, 34093 Montpellier Cedex 05, France
| | - Jean-Louis Baneres
- Institut des Biomolécules
Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM,
Faculté de Pharmacie, 15 Avenue
Charles Flahault, BP 14491, 34093 Montpellier Cedex 05, France
| | - Jacky Marie
- Institut des Biomolécules
Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM,
Faculté de Pharmacie, 15 Avenue
Charles Flahault, BP 14491, 34093 Montpellier Cedex 05, France
| | - Alejandra Tomas
- Section
of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Dirk Trauner
- Department
of Chemistry and Center for Integrated Protein Science, LMU Munich, 81377 Munich, Germany
- (D.T.) E-mail:
| | - Anja Hoffmann-Röder
- Department
of Chemistry and Center for Integrated Protein Science, LMU Munich, 81377 Munich, Germany
- (A.H.-R.) E-mail:
| | - David J. Hodson
- Institute
of Metabolism and Systems Research (IMSR), University of Birmingham, B15 2TT, Birmingham, United Kingdom
- Centre
for Endocrinology, Diabetes and Metabolism, Birmingham
Health Partners, Birmingham, B15 2TH, United Kingdom, and COMPARE University of Birmingham and University of Nottingham
Midlands
- (D.J.H.)
E-mail:
| |
Collapse
|
22
|
Vinogradova EV. Organometallic chemical biology: an organometallic approach to bioconjugation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThis review summarizes the history and recent developments of the field of organometallic chemical biology with a particular emphasis on the development of novel bioconjugation approaches. Over the years, numerous transformations have emerged for biomolecule modification with the use of organometallic reagents; these include [3+2] cycloadditions, C–C, C–S, C–N, and C–O bond forming processes, as well as metal-mediated deprotection (“decaging”) reactions. These conceptually new additions to the chemical biology toolkit highlight the potential of organometallic chemistry to make a significant impact in the field of chemical biology by providing further opportunities for the development of chemoselective, site-specific and spatially resolved methods for biomolecule structure and function manipulation. Examples of these transformations, as well as existing challenges and future prospects of this rapidly developing field are highlighted in this review.
Collapse
|