1
|
Li Y, Wang B, Zheng Y, Kang H, He A, Zhao L, Guo N, Liu H, Mardinoglu A, Mamun M, Gao Y, Chen X. The multifaceted role of post-translational modifications of LSD1 in cellular processes and disease pathogenesis. Genes Dis 2025; 12:101307. [PMID: 40028036 PMCID: PMC11870172 DOI: 10.1016/j.gendis.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 03/05/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins play a crucial role in living organisms, altering the properties and functions of proteins. There are over 450 known PTMs involved in various life activities. LSD1 (lysine-specific demethylase 1) is the first identified histone demethylase that can remove monomethylation or dimethylation modifications from histone H3 lysine K4 (H3K4) and histone H3 lysine K9 (H3K9). This ability of LSD1 allows it to inhibit or activate transcription. LSD1 has been found to abnormally express at the protein level in various tumors, making it relevant to multiple diseases. As a PTM enzyme, LSD1 itself undergoes various PTMs, including phosphorylation, acetylation, ubiquitination, methylation, SUMOylation, and S-nitrosylation, influencing its activity and function. Dysregulation of these PTMs has been implicated in a wide range of diseases, including cancer, metabolic disorders, neurological disorders, cardiovascular diseases, and bone diseases. Understanding the species of PTMs and functions regulated by various PTMs of LSD1 provides insights into its involvement in diverse physiological and pathological processes. In this review, we discuss the structural characteristics of LSD1 and amino acid residues that affect its enzyme activity. We also summarize the potential PTMs that occur on LSD1 and their involvement in cellular processes. Furthermore, we describe human diseases associated with abnormal expression of LSD1. This comprehensive analysis sheds light on the intricate interplay between PTMs and the functions of LSD1, highlighting their significance in health and diseases.
Collapse
Affiliation(s)
- Yinrui Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ang He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lijuan Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London WC2R 2LS, UK
| | - M.A.A. Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou, Henan 450001, China
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer & Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan 450008, China
| |
Collapse
|
2
|
Lee K, Barone M, Waterbury AL, Jiang H, Nam E, DuBois-Coyne SE, Whedon SD, Wang ZA, Caroli J, Neal K, Ibeabuchi B, Dhoondia Z, Kuroda MI, Liau BB, Beck S, Mattevi A, Cole PA. Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1. Nat Chem Biol 2025; 21:227-237. [PMID: 38965385 PMCID: PMC11699879 DOI: 10.1038/s41589-024-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis-regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marco Barone
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jonatan Caroli
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Katherine Neal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brian Ibeabuchi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zuzer Dhoondia
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samuel Beck
- Department of Dermatology, Boston University School of Medicine & Boston Medical Center, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Astleford-Hopper K, Abrahante Llorens JE, Bradley EW, Mansky KC. Lysine specific demethylase 1 conditional myeloid cell knockout mice have decreased osteoclast differentiation due to increased IFN- β gene expression. JBMR Plus 2025; 9:ziae142. [PMID: 39664933 PMCID: PMC11632826 DOI: 10.1093/jbmrpl/ziae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Osteoclasts are large multinucleated cells that degrade bone mineral and extracellular matrix. Investigating the epigenetic mechanisms orchestrating osteoclast differentiation is key to our understanding of the pathogenesis of skeletal related diseases such as periodontitis and osteoporosis. Lysine specific demethylase 1 (LSD1/KDM1A) is a member of the histone demethylase family that mediates the removal of mono- and dimethyl groups from H3K4 and H3K9 to elicit dichotomous effects on gene expression. Prior to our study, little was known about the contributions of LSD1 to skeletal development and osteoclast differentiation. Here we show that conditional deletion of Lsd1 within the myeloid lineage or macrophage/osteoclast precursors results in enhanced bone mass of male and female mice accompanied by diminished osteoclast size in vivo. Furthermore, Lsd1 deletion decreased osteoclast differentiation and activity within in vitro assays. Our bulk RNA-SEQ data suggest Lsd1 ablation in male and female mice inhibits osteoclast differentiation due to enhanced expression of interferon-β target genes. Lastly, we demonstrate that LSD1 forms an immune complex with HDAC1 and HDAC2. These data suggest that the combination of methylation and acetylation of histone residues, facilitated by LSD1, mechanistically promotes osteoclast gene expression.
Collapse
Affiliation(s)
- Kristina Astleford-Hopper
- Oral Biology Graduate Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - Juan E Abrahante Llorens
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery and Stem Cell Institute, University of Minnesota, Minneapolis MN 55455, United States
| | - Kim C Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| |
Collapse
|
4
|
Luo M, Jiang Z, Wang P, Chen Y, Chen A, Wei B. HDAC1-mediated regulation of KDM1A in pemphigus vulgaris: unlocking mechanisms on ERK pathway activation and cohesion loss. Hum Mol Genet 2024; 33:2133-2144. [PMID: 39471311 DOI: 10.1093/hmg/ddae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 11/01/2024] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin disorder characterized by the loss of cell cohesion, with the histone deacetylase 1 (HDAC1) and lysine demethylase 1A (KDM1A) playing critical roles in its pathogenesis. This study aimed to elucidate the molecular mechanisms behind PV, focusing on the function of HDAC1 and KDM1A in disease onset and progression. Based on in vitro and in vivo PV models, we observed a significant increase in HDAC1 mRNA and protein levels in skin tissues of PV patients. Inhibition of HDAC1 ameliorated cell damage and reduced the loss of cell cohesion in human epidermal keratinocytes (HEKs) induced by PV-IgG. Our findings suggest that HDAC1 regulates KDM1A expression through deacetylation, with a notable deficiency in KDM1A expression in PV. Overexpression of KDM1A mitigated cell damage and cohesion loss. The extracellular signal-regulated kinase (ERK) pathway serves as a downstream executor of the HDAC1/KDM1A axis. Inhibiting HDAC1 and increasing KDM1A expression suppressed ERK phosphorylation, reducing PV-related apoptosis. These insights provide a new perspective on treating PV, highlighting the therapeutic potential of targeting HDAC1 expression. The regulatory mechanism of the HDAC1/KDM1A/ERK axis offers crucial clues for understanding PV pathogenesis and developing novel treatments.
Collapse
Affiliation(s)
- Mao Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Ziqi Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Bin Wei
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
5
|
Zhu HJ, Zhou HM, Zhou XX, Li SJ, Zheng MJ, Xu Z, Dai WJ, Ban YB, Zhang MY, Zhang YZ, Lu JR, Xu YT, Wang SQ, Shi XJ, Duan YC. Discovery of Novel 5-Cyano-3-phenylindole-Based LSD1/HDAC Dual Inhibitors for Colorectal Cancer Treatment. J Med Chem 2024; 67:20172-20202. [PMID: 39540222 DOI: 10.1021/acs.jmedchem.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The dual inhibition of histone lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) has emerged as a promising strategy for cancer therapy. In this study, we report the discovery of novel 5-cyano-3-phenylindole-based LSD1/HDAC dual inhibitors, evaluated through both in vitro and in vivo assays. Among these inhibitors, compound 20c was identified as particularly potent, exhibiting high inhibitory activity against LSD1 (IC50 = 39.0 nM) and HDAC1/2/3/6/8 (IC50 = 1.4, 1.0, 1.3, 2.9, and 16.0 nM, respectively). Compound 20c effectively modulated the expression of biomarkers associated with LSD1 and HDAC inhibition and demonstrated superior antiproliferative activity compared to SAHA and 4SC-202 across multiple colorectal cancer cell lines. Following pharmacokinetic studies, 20c was further assessed in HCT-116 and HT-29 xenograft mouse models. It demonstrated significantly enhanced antitumor efficacy compared to SAHA, without causing observable toxicity. These findings highlight the potential of LSD1/HDAC dual inhibitors for the treatment of malignant cancers.
Collapse
Affiliation(s)
- Hui-Juan Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hui-Min Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiao-Xiao Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Shi-Jie Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Meng-Jie Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhen Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Wen-Jing Dai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yi-Bo Ban
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Meng-Yao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yi-Zhe Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jia-Rui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yong-Tao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Sai-Qi Wang
- Department of Oncology, Henan Province Engineering Research Center for of Intractable Digestive Tract Tumor Precision Therapy & Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province 450008, PR China
| | - Xiao-Jing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
6
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
7
|
Malla S, Kumari K, García-Prieto CA, Caroli J, Nordin A, Phan TTT, Bhattarai DP, Martinez-Gamero C, Dorafshan E, Stransky S, Álvarez-Errico D, Saiki PA, Lai W, Lyu C, Lizana L, Gilthorpe JD, Wang H, Sidoli S, Mateus A, Lee DF, Cantù C, Esteller M, Mattevi A, Roman AC, Aguilo F. The scaffolding function of LSD1 controls DNA methylation in mouse ESCs. Nat Commun 2024; 15:7758. [PMID: 39237615 PMCID: PMC11377572 DOI: 10.1038/s41467-024-51966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos A García-Prieto
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Paulina Avovome Saiki
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cong Lyu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ludvig Lizana
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden
| | | | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre Mateus
- Department of Chemistry, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Li M, Dai M, Cheng B, Li S, Guo E, Fu J, Ma T, Yu B. Strategies that regulate LSD1 for novel therapeutics. Acta Pharm Sin B 2024; 14:1494-1507. [PMID: 38572094 PMCID: PMC10985039 DOI: 10.1016/j.apsb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Histone methylation plays crucial roles in regulating chromatin structure and gene transcription in epigenetic modifications. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is universally overexpressed in various diseases. LSD1 dysregulation is closely associated with cancer, viral infections, and neurodegenerative diseases, etc., making it a promising therapeutic target. Several LSD1 inhibitors and two small-molecule degraders (UM171 and BEA-17) have entered the clinical stage. LSD1 can remove methyl groups from histone 3 at lysine 4 or lysine 9 (H3K4 or H3K9), resulting in either transcription repression or activation. While the roles of LSD1 in transcriptional regulation are well-established, studies have revealed that LSD1 can also be dynamically regulated by other factors. For example, the expression or activity of LSD1 can be regulated by many proteins that form transcriptional corepressor complexes with LSD1. Moreover, some post-transcriptional modifications and cellular metabolites can also regulate LSD1 expression or its demethylase activity. Therefore, in this review, we will systematically summarize how proteins involved in the transcriptional corepressor complex, various post-translational modifications, and metabolites act as regulatory factors for LSD1 activity.
Collapse
Affiliation(s)
- Meng Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Mengge Dai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Cheng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Enhui Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Junwei Fu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Huang Y, Zhai G, Fu Y, Li Y, Zang Y, Lin Y, Zhang K. A proximity labeling-based orthogonal trap strategy identifies HDAC8 promotes cell motility by modulating cortactin acetylation. Cell Chem Biol 2024; 31:514-522.e4. [PMID: 38460516 DOI: 10.1016/j.chembiol.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
It is a challenge for the traditional affinity methods to capture transient interactions of enzyme-post-translational modification (PTM) substrates in vivo. Herein we presented a strategy termed proximity labeling-based orthogonal trap approach (ProLORT), relying upon APEX2-catalysed proximity labeling and an orthogonal trap pipeline as well as quantitative proteomics to directly investigate the transient interactome of enzyme-PTM substrates in living cells. As a proof of concept, ProLORT allows for robust evaluation of a known HDAC8 substrate, histone H3K9ac. By leveraging this approach, we identified numerous of putative acetylated proteins targeted by HDAC8, and further confirmed CTTN as a bona fide substrate in vivo. Next, we demonstrated that HDAC8 facilitates cell motility via deacetylation of CTTN at lysine 144 that attenuates its interaction with F-actin, expanding the underlying regulatory mechanisms of HDAC8. We developed a general strategy to profile the transient enzyme-substrate interactions mediated by PTMs, providing a powerful tool for identifying the spatiotemporal PTM-network regulated by enzymes in living cells.
Collapse
Affiliation(s)
- Yepei Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China; Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou 350014, Fujian Province, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| | - Yun Fu
- Fujian Provincial Sperm bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yanan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yong Zang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
11
|
Yang X. Research progress of LSD1-based dual-target agents for cancer therapy. Bioorg Med Chem 2024; 101:117651. [PMID: 38401457 DOI: 10.1016/j.bmc.2024.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
12
|
Shen L, Wang B, Wang SP, Ji SK, Fu MJ, Wang SW, Hou WQ, Dai XJ, Liu HM. Combination Therapy and Dual-Target Inhibitors Based on LSD1: New Emerging Tools in Cancer Therapy. J Med Chem 2024; 67:922-951. [PMID: 38214982 DOI: 10.1021/acs.jmedchem.3c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.
Collapse
Affiliation(s)
- Liang Shen
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Bo Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shao-Peng Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shi-Kun Ji
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Meng-Jie Fu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shu-Wu Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Wen-Qing Hou
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|
13
|
Li D, Liang H, Wei Y, Xiao H, Peng X, Pan W. Exploring the potential of histone demethylase inhibition in multi-therapeutic approaches for cancer treatment. Eur J Med Chem 2024; 264:115999. [PMID: 38043489 DOI: 10.1016/j.ejmech.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Histone demethylases play a critical role in gene transcription regulation and have been implicated in cancer. Numerous reports have highlighted the overexpression of histone demethylases, such as LSD1 and JmjC, in various malignant tumor tissues, identifying them as effective therapeutic targets for cancer treatment. Despite many histone demethylase inhibitors entering clinical trials, their clinical efficacy has been limited. Therefore, combination therapies based on histone demethylase inhibitors, along with other modulators like dual-acting inhibitors, have gained significant attention and made notable progress in recent years. In this review, we provide an overview of recent advances in drug discovery targeting histone demethylases, focusing specifically on drug combination therapy and histone demethylases-targeting dual inhibitors. We discuss the rational design, pharmacodynamics, pharmacokinetics, and clinical status of these approaches. Additionally, we summarize the co-crystal structures of LSD1 inhibitors and their target proteins as well as describe the corresponding binding interactions. Finally, we also provided the challenges and future directions for utilizing histone demethylases in cancer therapy, such as PROTACs and molecular glue etc.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hailiu Liang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Yifei Wei
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xiao
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaopeng Peng
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Wanyi Pan
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
14
|
Han H, Feng X, He T, Wu Y, He T, Yue Z, Zhou W. Discussion on structure classification and regulation function of histone deacetylase and their inhibitor. Chem Biol Drug Des 2024; 103:e14366. [PMID: 37776270 DOI: 10.1111/cbdd.14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ziwen Yue
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| |
Collapse
|
15
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
16
|
Li M, Yu H, Li Y, Li X, Huang S, Liu X, Weng G, Xu L, Hou T, Guo DS, Wang Y. Rational design of supramolecular self-assembly sensor for living cell imaging of HDAC1 and its application in high-throughput screening. Biosens Bioelectron 2023; 242:115716. [PMID: 37820557 DOI: 10.1016/j.bios.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Supramolecular chemistry offers new insights in bioimaging, but specific tracking of enzyme in living cells via supramolecular host-guest reporter pair remains challenging, largely due to the interference caused by the complex cellular environment on the binding between analytes and hosts. Here, by exploiting the principle of supramolecular tandem assay (STA) and the classic host-guest reporter pair (p-sulfonatocalix[4]arene (SC4A) and lucigenin (LCG)) and rationally designing artificial peptide library to screen sequence with high affinity of the target enzyme, we developed a "turn-on" fluorescent sensing system for intracellular imaging of histone deacetylase 1 (HDAC1), which is a potential therapeutic target for various diseases, including cancer, neurological, and cardiovascular diseases. Based on computational simulations and experimental validations, we verified that the deacetylated peptide by HDAC1 competed LCG, freeing it from the SC4A causing fluorescence increase. Enzyme kinetics experiments were further conducted to prove that this assay could detect HDAC1 specifically with high sensitivity (the LOD value is 0.015 μg/mL, ten times lower than the published method). This system was further applied for high-throughput screening of HDAC1 inhibitors over a natural compound library containing 147 compounds, resulting in the identification of a novel HDAC1 down-regulator (Ginsenoside RK3). Our results demonstrated the sensitivity and robustness of the assay system towards HDAC1. It should serve as a valuable tool for biochemical studies and drug screening.
Collapse
Affiliation(s)
- Min Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijuan Yu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| | - Gaoqi Weng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Future Health Laboratory Innovation Center of Yangtze River Delta Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
17
|
Shukri AH, Lukinović V, Charih F, Biggar KK. Unraveling the battle for lysine: A review of the competition among post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194990. [PMID: 37748678 DOI: 10.1016/j.bbagrm.2023.194990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Proteins play a critical role as key regulators in various biological systems, influencing crucial processes such as gene expression, cell cycle progression, and cellular proliferation. However, the functions of proteins can be further modified through post-translational modifications (PTMs), which expand their roles and contribute to disease progression when dysregulated. In this review, we delve into the methodologies employed for the characterization of PTMs, shedding light on the techniques and tools utilized to help unravel their complexity. Furthermore, we explore the prevalence of crosstalk and competition that occurs between different types of PTMs, specifically focusing on both histone and non-histone proteins. The intricate interplay between different modifications adds an additional layer of regulation to protein function and cellular processes. To gain insights into the competition for lysine residues among various modifications, computational systems such as MethylSight have been developed, allowing for a comprehensive analysis of the modification landscape. Additionally, we provide an overview of the exciting developments in the field of inhibitors or drugs targeting PTMs, highlighting their potential in combatting prevalent diseases. The discovery and development of drugs that modulate PTMs present promising avenues for therapeutic interventions, offering new strategies to address complex diseases. As research progresses in this rapidly evolving field, we anticipate remarkable advancements in our understanding of PTMs and their roles in health and disease, ultimately paving the way for innovative treatment approaches.
Collapse
Affiliation(s)
- Ali H Shukri
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Valentina Lukinović
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - François Charih
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Kim D, Nam HJ, Baek SH. Post-translational modifications of lysine-specific demethylase 1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194968. [PMID: 37572976 DOI: 10.1016/j.bbagrm.2023.194968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD+ as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Jin Nam
- Center for Rare Disease Therapeutic Technology, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
20
|
Yan S, Lu Z, Yang W, Xu J, Wang Y, Xiong W, Zhu R, Ren L, Chen Z, Wei Q, Liu SM, Feng T, Yuan B, Weng X, Du Y, Zhou X. Antibody-Free Fluorine-Assisted Metabolic Sequencing of RNA N4-Acetylcytidine. J Am Chem Soc 2023; 145:22232-22242. [PMID: 37772932 DOI: 10.1021/jacs.3c08483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
N4-Acetylcytidine (ac4C) has been found to affect a variety of cellular and biological processes. For a mechanistic understanding of the roles of ac4C in biology and disease, we present an antibody-free, fluorine-assisted metabolic sequencing method to detect RNA ac4C, called "FAM-seq". We successfully applied FAM-seq to profile ac4C landscapes in human 293T, HeLa, and MDA cell lines in parallel with the reported acRIP-seq method. By comparison with the classic ac4C antibody sequencing method, we found that FAM-seq is a convenient and reliable method for transcriptome-wide mapping of ac4C. Because this method holds promise for detecting nascent RNA ac4C modifications, we further investigated the role of ac4C in regulating chemotherapy drug resistance in chronic myeloid leukemia. The results indicated that drug development or combination therapy could be enhanced by appreciating the key role of ac4C modification in cancer therapy.
Collapse
Affiliation(s)
- Shen Yan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Ziang Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Jinglei Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Rongjie Zhu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Linao Ren
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Zhaoxin Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China
| | - Tian Feng
- School of Public Health, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Bifeng Yuan
- School of Public Health, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yuhao Du
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430072, Hubei, PR China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, PR China
| |
Collapse
|
21
|
Duan Y, Yu T, Jin L, Zhang S, Shi X, Zhang Y, Zhou N, Xu Y, Lu W, Zhou H, Zhu H, Bai S, Hu K, Guan Y. Discovery of novel, potent, and orally bioavailable HDACs inhibitors with LSD1 inhibitory activity for the treatment of solid tumors. Eur J Med Chem 2023; 254:115367. [PMID: 37086699 DOI: 10.1016/j.ejmech.2023.115367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 μM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Linfeng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Shaojie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiaojing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Yizhe Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Nanqian Zhou
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Wenfeng Lu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Huimin Zhou
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Huijuan Zhu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Kua Hu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Yuanyuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
22
|
Herath KE, Kodikara IKM, Pflum MKH. Proteomics-based trapping with single or multiple inactive mutants reproducibly profiles histone deacetylase 1 substrates. J Proteomics 2023; 274:104807. [PMID: 36587730 DOI: 10.1016/j.jprot.2022.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Histone deacetylase 1 (HDAC1) plays a key role in diverse cellular processes. With the aberrant expression of HDAC1 linked to many diseases, including cancers, HDAC inhibitors have been used successfully as therapeutics. HDAC1 has been predominantly associated with histone deacetylation and gene expression. Recently, non-histone substrates have revealed diverse roles of HDAC1 beyond epigenetics. To augment discovery of non-histone substrates, we introduced "substrate trapping" to enrich HDAC1 substrates using an inactive mutant. Herein, we performed a series of proteomics studies to test the robustness of HDAC1 substrate trapping. Based on our recent results documenting that different HDAC1 mutants preferentially bound different substrates, which suggested that multiple mutants could be used for efficient trapping, trapping with three single point mutants simultaneously identified several potential substrates uniquely compared to a single mutant alone. However, a greater number of biologically interesting hits were observed using only a single mutant, which suggests that the C151A HDAC1 mutant is the optimal trap. Importantly, comparing independent trials with a single mutant performed by different experimentalists and HEK293 cell populations, trapping was robust and reproducible. Based on the reproducible trapping data, carnosine N-methyltransferase 1 (CARNMT1) was validated as an HDAC1 substrate. The data document that mutant trapping is an effective method for discovery of unanticipated HDAC substrates. SIGNIFICANCE: Histone deacetylase (HDAC) proteins are well established epigenetic transcriptional regulators that deacetylate histone substrates to control gene expression. More recently, deacetylation of non-histone substrates has linked HDAC activity to functions outside of epigenetics. Given the use of HDAC inhibitor drugs as anti-cancer therapeutics, understanding the full functions of HDAC proteins in cell biology is essential to future drug design. To discover unanticipated non-histone substrates and further characterize HDAC functions, inactive mutants have been used to "trap" putative substrates, which were identified with mass spectrometry-based proteomics analysis. Here multiple trapping studies were performed to test the robustness of using inactive mutants and proteomics for HDAC substrate discovery. The data confirm the value of trapping mutants as effective tools to discover HDAC substrates and link HDAC activity to unexpected biological functions.
Collapse
Affiliation(s)
- Kavinda E Herath
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States of America
| | - Ishadi K M Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States of America
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States of America.
| |
Collapse
|
23
|
Dual LSD1 and HDAC6 Inhibition Induces Doxorubicin Sensitivity in Acute Myeloid Leukemia Cells. Cancers (Basel) 2022; 14:cancers14236014. [PMID: 36497494 PMCID: PMC9737972 DOI: 10.3390/cancers14236014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.
Collapse
|
24
|
Manea SA, Vlad ML, Lazar AG, Muresian H, Simionescu M, Manea A. Pharmacological Inhibition of Lysine-Specific Demethylase 1A Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice by a Mechanism Involving Decreased Oxidative Stress and Inflammation; Potential Implications in Human Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11122382. [PMID: 36552592 PMCID: PMC9774905 DOI: 10.3390/antiox11122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Dysregulated epigenetic mechanisms promote transcriptomic and phenotypic alterations in cardiovascular diseases. The role of histone methylation-related pathways in atherosclerosis is largely unknown. We hypothesize that lysine-specific demethylase 1A (LSD1/KDM1A) regulates key molecular effectors and pathways linked to atherosclerotic plaque formation. Human non-atherosclerotic and atherosclerotic tissue specimens, ApoE-/- mice, and in vitro polarized macrophages (Mac) were examined. Male ApoE-/- mice fed a normal/atherogenic diet were randomized to receive GSK2879552, a highly specific LSD1 inhibitor, or its vehicle, for 4 weeks. The mRNA and protein expression levels of LSD1/KDM1A were significantly elevated in atherosclerotic human carotid arteries, atherosclerotic aortas of ApoE-/- mice, and M1-Mac. Treatment of ApoE-/- mice with GSK2879552 significantly reduced the extent of atherosclerotic lesions and the aortic expression of NADPH oxidase subunits (Nox1/2/4, p22phox) and 4-hydroxynonenal-protein adducts. Concomitantly, the markers of immune cell infiltration and vascular inflammation were significantly decreased. LSD1 blockade down-regulated the expression of genes associated with Mac pro-inflammatory phenotype. Nox subunit transcript levels were significantly elevated in HEK293 reporter cells overexpressing LSD1. In experimental atherosclerosis, LSD1 mediates the up-regulation of molecular effectors connected to oxidative stress and inflammation. Together, these data indicate that LSD1-pharmacological interventions are novel targets for supportive therapeutic strategies in atherosclerosis.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Horia Muresian
- Cardiovascular Surgery Department, University Hospital Bucharest, 050098 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
- Correspondence:
| |
Collapse
|
25
|
Lv S, Zhao X, Zhang E, Yan Y, Ma X, Li N, Zou Q, Sun L, Song T. Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma. J Biol Chem 2022; 298:102374. [PMID: 35970393 PMCID: PMC9478407 DOI: 10.1016/j.jbc.2022.102374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) has a dismal prognosis. KDM1A, overexpressed in multiple cancer types, is a lysine demethylase that targets both histone and non-histone proteins. However, it is unclear how KDM1A expression affects HCC etiology. Here, we show KDM1A can interact with and demethylate FKBP8, a cytoplasmic protein which regulates cell survival through the anti-apoptotic protein BCL2. We show demethylation of FKBP8 enhances its ability to stabilize BCL2. Consistently, we observed positive correlation between KDM1A and BCL2 protein levels in liver cancer patients. Functionally, we reveal FKBP8 demethylation by KDM1A is critical for liver cancer cell growth in vitro and in vivo. We went on to explore the mechanisms that might regulate KDM1A cytoplasmic localization. We found the cytoplasmic localization and protein stability of KDM1A was promoted by acetylation at Lysine-117 by the acetyl transferase KAT8. In agreement with this, we show KDM1A-K117 acetylation promotes demethylation of FKBP8 and level of BCL2. Finally, it has been shown that the efficacy of Sorafenib, a first-line treatment for advanced hepatocellular carcinoma, is limited by clinical resistance. We show KDM1A and BCL2 protein levels are increased during acquired sorafenib-resistance, while inhibiting KDM1A can antagonize sorafenib-resistance. Collectively, these results define a functional KDM1A-FKBP8-BCL2 axis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yingying Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030
| | - Xianyun Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
26
|
Zhang Y, Andrade R, Hanna AA, Pflum MKH. Evidence that HDAC7 acts as an epigenetic "reader" of AR acetylation through NCoR-HDAC3 dissociation. Cell Chem Biol 2022; 29:1162-1173.e5. [PMID: 35709754 DOI: 10.1016/j.chembiol.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Histone deacetylase (HDAC) proteins are epigenetic regulators that govern a wide variety of cellular events. With a role in cancer formation, HDAC inhibitors have emerged as anti-cancer therapeutics. Among the eleven metal-dependent class I, II, and IV HDAC proteins targeted by inhibitor drugs, class IIa HDAC4, -5, -7, and -9 harbor low deacetylase activity and are hypothesized to be "reader" proteins, which bind to post-translationally acetylated lysine. However, evidence linking acetyllysine binding to a downstream functional event is lacking. Here, we report for the first time that HDAC4, -5, and -7 dissociated from corepressor NCoR in the presence of an acetyllysine-containing peptide, consistent with reader function. Documenting the biological consequences of this possible reader function, mutation of a critical acetylation site regulated androgen receptor (AR) transcriptional activation function through HDAC7-NCoR-HDAC3 dissociation. The data document the first evidence consistent with epigenetic-reader functions of class IIa HDAC proteins.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Rafael Andrade
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Anthony A Hanna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
27
|
Gomes ID, Ariyaratne UV, Pflum MKH. HDAC6 Substrate Discovery Using Proteomics-Based Substrate Trapping: HDAC6 Deacetylates PRMT5 to Influence Methyltransferase Activity. ACS Chem Biol 2021; 16:1435-1444. [PMID: 34314149 DOI: 10.1021/acschembio.1c00303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase 6 (HDAC6) is upregulated in a variety of tumor cell lines and has been linked to many cellular processes, such as cell signaling, protein degradation, cell survival, and cell motility. HDAC6 is an enzyme that deacetylates the acetyllysine residues of protein substrates, and the discovery of HDAC6 substrates, including tubulin, has revealed many roles of HDAC6 in cell biology. Unfortunately, among the wide variety of acetylated proteins in the cell, only a few are verified as HDAC6 substrates, which limits the full characterization of HDAC6 cellular functions. Substrate trapping mutants were recently established as a tool to discover unanticipated substrates of histone deacetylase 1 (HDAC1). In this study, we applied the trapping approach to identify potential HDAC6 substrates. Among the high confidence protein hits after trapping, protein arginine methyl transferase 5 (PRMT5) was successfully validated as a novel HDAC6 substrate. PRMT5 acetylation enhanced its methyltransferase activity and symmetrical dimethylation of downstream substrates, revealing possible crosstalk between acetylation and methylation. Substrate trapping represents a powerful, systematic, and unbiased approach to discover substrates of HDAC6.
Collapse
Affiliation(s)
- Inosha D. Gomes
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Udana V. Ariyaratne
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Histone Deacetylation Regulated by KDM1A to Suppress DACT1 in Proliferation and Migration of Cervical Cancer. ACTA ACUST UNITED AC 2021; 2021:5555452. [PMID: 34350095 PMCID: PMC8328692 DOI: 10.1155/2021/5555452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
Objective Increased expression of KDM1A and decreased expression of DACT1 in cervical cancer cells were noticed in a previous study. This study is aimed at exploring the mechanism behind the KDM1A regulation on DACT1 in cervical cancer cells. Methods The expression profile of KDM1A and DACT1 in cervical cancer tissues was searched in TCGA database. In vitro experiments verified the effect of KDM1A and DACT1 on proliferation and migration ability of cervical cancer cell lines after cell transfection. The interaction of KDM1A with HDAC1 was identified by coimmunoprecipitation (Co-IP). The expression levels of KDM1A and DACT1 in cervical cancer cell lines were determined by qRT-PCR and western blot. Results TCGA database showed that cervical cancer tissues had elevated expression of KDM1A and decreased expression of DACT1, which was consistent with the observation in cervical cancer cell lines. KDM1A was found to negatively regulate DACT1 through histone deacetylation. Meanwhile, the downregulation of KDM1A or overexpression of DACT1 could suppress the cell proliferation and migration ability in HeLa and SiHa cells. Cotransfection of KDM1A and DACT1 overexpression could reverse the increased cell proliferation and migration ability induced by KDM1A overexpression. Conclusion KDM1A can downregulate DACT1 expression through histone deacetylation and therefore suppress the proliferation and migration of cervical cancer cells.
Collapse
|
29
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
30
|
Aufhauser DD, Hernandez P, Concors SJ, O'Brien C, Wang Z, Murken DR, Samanta A, Beier UH, Krumeich L, Bhatti TR, Wang Y, Ge G, Wang L, Cheraghlou S, Wagner FF, Holson EB, Kalin JH, Cole PA, Hancock WW, Levine MH. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep 2021; 11:9018. [PMID: 33907245 PMCID: PMC8079686 DOI: 10.1038/s41598-021-88242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Histone/protein deacetylases (HDAC) 1 and 2 are typically viewed as structurally and functionally similar enzymes present within various co-regulatory complexes. We tested differential effects of these isoforms in renal ischemia reperfusion injury (IRI) using inducible knockout mice and found no significant change in ischemic tolerance with HDAC1 deletion, but mitigation of ischemic injury with HDAC2 deletion. Restriction of HDAC2 deletion to the kidney via transplantation or PAX8-controlled proximal renal tubule-specific Cre resulted in renal IRI protection. Pharmacologic inhibition of HDAC2 increased histone acetylation in the kidney but did not extend renal protection. Protein analysis demonstrated increased HDAC1-associated CoREST protein in HDAC2-/- versus WT cells, suggesting that in the absence of HDAC2, increased CoREST complex occupancy of HDAC1 can stabilize this complex. In vivo administration of a CoREST inhibitor exacerbated renal injury in WT mice and eliminated the benefit of HDAC2 deletion. Gene expression analysis of endothelin showed decreased endothelin levels in HDAC2 deletion. These data demonstrate that contrasting effects of HDAC1 and 2 on CoREST complex stability within renal tubules can affect outcomes of renal IRI and implicate endothelin as a potential downstream mediator.
Collapse
Affiliation(s)
| | - Paul Hernandez
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J Concors
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ciaran O'Brien
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhonglin Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Murken
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Arabinda Samanta
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Krumeich
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tricia R Bhatti
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yanfeng Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Guanghui Ge
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew H Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Design, synthesis, and biological evaluation of novel dual inhibitors targeting lysine specific demethylase 1 (LSD1) and histone deacetylases (HDAC) for treatment of gastric cancer. Eur J Med Chem 2021; 220:113453. [PMID: 33957387 DOI: 10.1016/j.ejmech.2021.113453] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
LSD1 and HDAC are physical and functional related to each other in various human cancers and simultaneous pharmacological inhibition of LSD1 and HDAC exerts synergistic anti-cancer effects. In this work, a series of novel LSD1/HDAC bifunctional inhibitors with a styrylpyridine skeleton were designed and synthesized based on our previously reported LSD1 inhibitors. The representative compounds 5d and 5m showed potent activity against LSD1 and HDAC at both molecular and cellular level and displayed high selectivity against MAO-A/B. Moreover, compounds 5d and 5m demonstrated potent antiproliferative activities against MGC-803 and HCT-116 cancer cell lines. Notably, compound 5m showed superior in vitro anticancer potency against a panel of gastric cancer cell lines than ORY-1001 and SP-2509 with IC50 values ranging from 0.23 to 1.56 μM. Compounds 5d and 5m significantly modulated the expression of Bcl-2, Bax, Vimentin, ZO-1 and E-cadherin, induced apoptosis, reduced colony formation and suppressed migration in MGC-803 cancer cells. In addition, preliminary absorption, distribution, metabolism, excretion (ADME) studies revealed that compounds 5d and 5m showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). Those results indicated that compound 5m could be a promising lead compound for further development as a therapeutic agent in gastric cancers via LSD1 and HDAC dual inhibition.
Collapse
|
32
|
Zhang Y, Nalawansha DA, Herath KE, Andrade R, Pflum MKH. Differential profiles of HDAC1 substrates and associated proteins in breast cancer cells revealed by trapping. Mol Omics 2021; 17:544-553. [PMID: 33885658 DOI: 10.1039/d0mo00047g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylase (HDAC) proteins, which regulate the acetylation state of proteins, are the targets of multiple clinical drugs for cancer treatment. Due to the heterogeneity of tumors, HDAC proteins play different roles in the progression of various cancer types. For example, MDA-MB-468 and MDA-MB-231 cells are both triple negative breast cancer cells but belong to different subtypes that display different response to HDAC inhibitor drugs. To investigate the role of HDAC proteins in breast cancer, the substrate and associated proteins of HDAC1 in MDA-MB-231, MDA-MB-468, and a normal breast epithelial cell line, MCF10A, were analyzed using substrate trapping mutants and proteomics-based mass spectrometry. All three cell lines demonstrated nonoverlapping substrate protein profiles. While both normal MCF10A and cancerous MDA-MB-468 cell lines contained similar HDAC1 associated proteins, including proteins associated with epigenetic and RNA processing mechanisms, the HDAC1 associated protein profile of MDA-MB-231 cells was devoid of expected epigenetic proteins. The variable associated protein profiles of MDA-MB-231 and MDA-MB-468 suggest that HDAC1 plays distinct roles in breast cancer cell biology, which might affect cancer aggressiveness and HDAC inhibitor sensitivity.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| | | | - Kavinda E Herath
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| | - Rafael Andrade
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
33
|
Zhou J, Zhou H, Liu C, Huang L, Lu D, Gao C. HDAC1-mediated deacetylation of LSD1 regulates vascular calcification by promoting autophagy in chronic renal failure. J Cell Mol Med 2020; 24:8636-8649. [PMID: 32596952 PMCID: PMC7412400 DOI: 10.1111/jcmm.15494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic renal failure (CRF) is commonly associated with various adverse consequences including pathological vascular calcification (VC), which represents a significant clinical concern. Existing literature has suggested the involvement of histone deacetylases (HDACs) in the progression of CRF‐induced VC. However, the underlying molecular mechanisms associated with HDACs remain largely unknown. Therefore, we established the adenine‐induced CRF rat model and in vitro VC models based on vascular smooth muscle cells (VSMCs) to examine HDAC1/lysine demethylase 1A (LSD1)/SESN2 as a novel molecular pathway in CRF‐induced VC. Our initial results demonstrated that HDAC1 reduced the formation of VC in vivo and in vitro. HDAC1 was found to deacetylate LSD1, which subsequently led to impaired transcriptional activity in CRF‐induced VC. Moreover, our results illustrated that LSD1 diminished the enrichment of H3K4me2 at the SESN2 promoter. Autophagy was identified as a vasculo‐protective element against calcification in VC. Finally, we found that the inhibitory effects of HDAC1 overexpression on VC were partially abolished via over‐expressed LSD1 in adenine‐induced CRF model rats and in high phosphate‐induced VSMCs. Taken together, these results highlight the crucial role of HDAC1 as an antagonistic factor in the progression of VC in CRF, and also revealed a novel regulatory mechanism by which HDAC1 operates. These findings provide significant insight and a fresh perspective into promising novel treatment strategies by up‐regulating HDAC1 in CRF.
Collapse
Affiliation(s)
- Jiajun Zhou
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Han Zhou
- Queen Mary College of Nanchang University, Nanchang, China
| | - Caixin Liu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lin Huang
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dongmei Lu
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chaoqing Gao
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
34
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
35
|
Jiao M, Xia L, Chen J, Cui Z. WITHDRAWN: Demethylation of Di-Methylation of Lysine 4 on Histone 3 Is Inhibited by General Control Nondepressible 5-Induced Acetylation of Lysine-Specific Demethylase 1. Am J Med Sci 2020:S0002-9629(20)30003-3. [PMID: 31982102 DOI: 10.1016/j.amjms.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lijian Xia
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingbo Chen
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhonghui Cui
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
36
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
37
|
McClellan D, Casey MJ, Bareyan D, Lucente H, Ours C, Velinder M, Singer J, Lone MD, Sun W, Coria Y, Mason CC, Engel ME. Growth Factor Independence 1B-Mediated Transcriptional Repression and Lineage Allocation Require Lysine-Specific Demethylase 1-Dependent Recruitment of the BHC Complex. Mol Cell Biol 2019; 39:e00020-19. [PMID: 30988160 PMCID: PMC6580704 DOI: 10.1128/mcb.00020-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.
Collapse
Affiliation(s)
- David McClellan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mattie J Casey
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diana Bareyan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Helena Lucente
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Ours
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Matthew Velinder
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Singer
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mehraju Din Lone
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Wenxiang Sun
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yunuen Coria
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Michael E Engel
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
- Center for Investigational Therapeutics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Nuclear Control of Cell Growth and Differentiation Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
38
|
Gomes ID, Pflum MKH. Optimal Substrate-Trapping Mutants to Discover Substrates of HDAC1. Chembiochem 2019; 20:1444-1449. [PMID: 30701667 DOI: 10.1002/cbic.201800797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 11/11/2022]
Abstract
Histone deacetylase 1 (HDAC1) regulates transcription by deacetylating histones. In addition to histones, several non-histone proteins are HDAC1 substrates, which suggests a role for HDAC1 beyond epigenetics. Unfortunately, the identification of non-histone substrates has been largely serendipitous, which makes full characterization of HDAC1 functions difficult. To overcome this challenge, inactive "trapping" mutants were recently developed to identify HDAC1 substrates. To optimize substrate trapping, the relative trapping abilities of 17 inactive HDAC1 mutants was assessed. HDAC1 H141A, F150A, and C151A showed strong binding to substrates LSD1 and p53. Interestingly, each mutant preferentially trapped a different substrate. By combining several inactive mutants, the trapping strategy will facilitate the discovery of new HDAC1 substrates and shed light on the variety of HDAC1-related functions in cell biology.
Collapse
Affiliation(s)
- Inosha D Gomes
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
39
|
Lee A, Borrello MT, Ganesan A. LSD
(Lysine‐Specific Demethylase): A Decade‐Long Trip from Discovery to Clinical Trials. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527809257.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Nalawansha DA, Zhang Y, Herath K, Pflum MKH. HDAC1 Substrate Profiling Using Proteomics-Based Substrate Trapping. ACS Chem Biol 2018; 13:3315-3324. [PMID: 30421914 PMCID: PMC6563814 DOI: 10.1021/acschembio.8b00737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) proteins are overexpressed in multiple diseases, including cancer, and have emerged as anticancer drug targets. HDAC proteins regulate cellular processes, such as the cell cycle, apoptosis, and cell proliferation, by deacetylating histone and non-histone substrates. Although a plethora of acetylated proteins have been identified using large-scale proteomic approaches, the HDAC proteins responsible for their dynamic deacetylation have been poorly studied. For example, few substrates of HDAC1 have been identified, which is mainly due to the scarcity of substrate identification tools. We recently developed a mutant trapping strategy to identify novel substrates of HDAC1. Herein, we introduce an improved version of the trapping method that uses mass spectrometry (MS)-based proteomics to identify multiple substrates simultaneously. Among the substrate hits, CDK1, AIFM1, MSH6, and RuvB-like 1 were identified as likely HDAC1 substrates. These newly discovered HDAC1 substrates are involved in various biological processes, suggesting novel functions of HDAC1 apart from epigenetics. Substrate trapping combined with MS-based proteomics provides an efficient approach to HDAC1 substrate identification and contributes to the full characterization of HDAC function in normal and disease states.
Collapse
Affiliation(s)
| | - Yuchen Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Kavinda Herath
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
41
|
The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity. Eur J Med Chem 2017; 143:1790-1806. [PMID: 29150330 DOI: 10.1016/j.ejmech.2017.10.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/28/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023]
Abstract
Histone deacetylase (HDAC) enzymes govern the post-translational acetylation state of lysine residues on protein substrates, leading to regulatory changes in cell function. Due to their role in cancers, HDAC proteins have emerged as promising targets for cancer treatment. Four HDAC inhibitors have been approved as anti-cancer therapeutics, including SAHA (Suberoylanilide hydroxamic acid, Vorinostat, Zolinza). SAHA is a nonselective HDAC inhibitor that targets most of the eleven HDAC isoforms. The nonselectivity of SAHA might account for its clinical side effects, but certainly limits its use as a chemical tool to study cancer-related HDAC cell biology. Herein, the nonselective HDAC inhibitor SAHA was modified at the C4 position of the linker to explore activity and selectivity. Several C4-modified SAHA analogs exhibited dual HDAC6/8 selectivity. Interestingly, (R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. In cellulo testing of the inhibitors was consistent with the observed in vitro selectivity. Docking studies provided a structural rationale for selectivity. The C4-SAHA analogs represent useful chemical tools to understand the role of HDAC6 and HDAC8 in cancer biology and exciting lead compounds for targeting of both HDAC6 and HDAC8 in various cancers.
Collapse
|
42
|
Duan YC, Ma YC, Qin WP, Ding LN, Zheng YC, Zhu YL, Zhai XY, Yang J, Ma CY, Guan YY. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur J Med Chem 2017; 140:392-402. [PMID: 28987602 DOI: 10.1016/j.ejmech.2017.09.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Lysine specific demethylase 1 (LSD1) and Histone deacetylases (HDACs) are promising drug targets for cancers. Recent studies reveal an important functional interplay between LSD1 and HDACs, and there is evidence for the synergistic effect of combined LSD1 and HDAC inhibitors on cancers. Therefore, development of inhibitors targeting both LSD1 and HDACs might be a promising strategy for epigenetic therapy of cancers. We report herein the synthesis of a series of tranylcypromine derivatives as LSD1/HDACs dual inhibitors. Most compounds showed potent LSD1 and HDACs inhibitory activity, especially compound 7 displayed the most potent inhibitory activity against HDAC1 and HDAC2 with IC50 of 15 nM and 23 nM, as well as potent inhibition against LSD1 with IC50 of 1.20 μM. Compound 7 demonstrated stronger anti-proliferative activities than SAHA with IC50 values ranging from 0.81 to 4.28 μM against MGC-803, MCF-7, SW-620 and A-549 human cancer cell lines. Further mechanistic studies showed that compound 7 treatment in MGC-803 cells dose-dependently increased cellular H3K4 and H3K9 methylation, as well as H3 acetylation, decreased the mitochondrial membrane potential and induced remarkable apoptosis. Docking studies showed that compound 7 can be well docked into the active binding sites of LSD1 and HDAC2. This finding highlights the potential for the development of LSD1/HDACs dual inhibitors as novel anticancer drugs.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Yong-Cheng Ma
- Department of Pharmacy, Zhengzhou University People's Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan, China
| | - Wen-Ping Qin
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Li-Na Ding
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying-Li Zhu
- Department of Pharmacy, Zhengzhou University People's Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan, China
| | - Xiao-Yu Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jing Yang
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Chao-Ya Ma
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
43
|
Negmeldin AT, Pflum MKH. The structural requirements of histone deacetylase inhibitors: SAHA analogs modified at the C5 position display dual HDAC6/8 selectivity. Bioorg Med Chem Lett 2017. [PMID: 28648461 DOI: 10.1016/j.bmcl.2017.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone deacetylase (HDAC) proteins have emerged as important targets for anti-cancer drugs, with four small molecules approved for use in the clinic. Suberoylanilide hydroxamic acid (Vorinostat, SAHA) was the first FDA-approved HDAC inhibitor for cancer treatment. However, SAHA inhibits most of the eleven HDAC isoforms. To understand the structural requirements of HDAC inhibitor selectivity and develop isoform selective HDAC inhibitors, SAHA analogs modified in the linker at the C5 position were synthesized and tested for potency and selectivity. C5-modified SAHA analogs displayed dual selectivity to HDAC6 and HDAC8 over HDAC 1, 2, and 3, with only a modest reduction in potency. These findings are consistent with prior work showing that modification of the linker region of SAHA can alter isoform selectivity. The observed HDAC6/8 selectivity of C5-modified SAHA analogs provide guidance toward development of isoform selective HDAC inhibitors and more effective anti-cancer drugs.
Collapse
Affiliation(s)
- Ahmed T Negmeldin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States.
| |
Collapse
|
44
|
HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation. Cell Chem Biol 2017; 24:481-492.e5. [PMID: 28392145 DOI: 10.1016/j.chembiol.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/08/2016] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
Abstract
Histone deacetylase 1 (HDAC1) is an epigenetic enzyme that regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating histone substrates. Aberrant expression of HDAC1 is implicated in multiple diseases, including cancer. As a consequence, HDAC inhibitors have emerged as effective anti-cancer drugs. HDAC inhibitor-induced G0/G1 cell-cycle arrest has been attributed to epigenetic transcriptional changes mediated by histone acetylation. However, the mechanism of G2/M arrest remains poorly understood. Here, we identified mitosis-related protein Eg5 (KIF11) as an HDAC1 substrate using a trapping mutant strategy. HDAC1 colocalized with Eg5 during mitosis and influenced the ATPase activity of Eg5. Importantly, an HDAC1- and HDAC2-selective inhibitor caused mitotic arrest and monopolar spindle formation, consistent with a model in which Eg5 deacetylation by HDAC1 is critical for mitotic progression. These findings revealed a previously unknown mechanism of action of HDAC inhibitors involving Eg5 acetylation, and provide a compelling mechanistic hypothesis for HDAC inhibitor-mediated G2/M arrest.
Collapse
|