1
|
Tanoeyadi S, Zhou W, Osborn AR, Tsunoda T, Samadi A, Burade S, Waldo TJ, Higgins MA, Mahmud T. 2-Deoxy-4- epi- scyllo-inosose (DEI) is the Product of EboD, a Highly Conserved Dehydroquinate Synthase-like Enzyme in Bacteria and Eustigmatophyte Algae. ACS Chem Biol 2024; 19:2277-2283. [PMID: 39404639 PMCID: PMC11567786 DOI: 10.1021/acschembio.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A cryptic cluster of genes, known as the ebo cluster, has been found in a variety of genomic contexts among bacteria and algae. In Pseudomonas fluorescens NZI7, the ebo cluster (a.k.a. EDB cluster) is involved in the bacterial repellent mechanism against nematode grazing. In cyanobacteria, the cluster plays a role in the transport of the scytonemin monomer from the cytosol to the periplasm. Despite their broad distribution and interesting phenotypes, neither the pathway nor the functions of the enzymes are known. Here we show that EboD proteins from the ebo clusters in Nostoc punctiforme and Sporocytophaga myxococcoides catalyze the cyclization of mannose 6-phosphate to a novel cyclitol, 2-deoxy-4-epi-scyllo-inosose. The enzyme product is postulated to be a precursor of a signaling molecule or a transporter in the organisms. This study sheds the first light onto ebo/EDB pathways and established a functionally distinct enzyme that extends the diversity of sugar phosphate cyclases.
Collapse
Affiliation(s)
- Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Andrew R. Osborn
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Sachin Burade
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Ty J. Waldo
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Melanie A. Higgins
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (USA)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| |
Collapse
|
2
|
Samadi A, Tanoeyadi S, Tsunoda T, Proteau PJ, Mahmud T. Synthesis of the Carba-Analogs of the α-Pyranose and β-Pyranose Forms of Sedoheptulose 7-Phosphate and Probing the Stereospecificity of Sedoheptulose 7-Phosphate Cyclases. Biochemistry 2024; 63:1359-1368. [PMID: 38685871 PMCID: PMC11144361 DOI: 10.1021/acs.biochem.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Sedoheptulose 7-phosphate (SH7P) cyclases are a subset of sugar phosphate cyclases that are known to catalyze the first committed step in many biosynthetic pathways in primary and secondary metabolism. Among them are 2-epi-5-epi-valiolone synthase (EEVS) and 2-epi-valiolone synthase (EVS), two closely related SH7P cyclases that catalyze the conversion of SH7P to 2-epi-5-epi-valiolone and 2-epi-valiolone, respectively. However, how these two homologous enzymes use a common substrate to produce stereochemically different products is unknown. Two competing hypotheses have been proposed for the stereospecificity of EEVS and EVS: (1) variation in aldol acceptor geometry during enzyme catalysis, and (2) preselection of the α-pyranose or β-pyranose forms of the substrate by the enzymes. Yet, there is no direct evidence to support or rule out either of these hypotheses. Here we report the synthesis of the carba-analogs of the α-pyranose and β-pyranose forms of SH7P and their use in probing the stereospecificity of ValA (EEVS from Streptomyces hygroscopicus subsp. jinggangensis) and Amir_2000 (EVS from Actinosynnema mirum DSM 43827). Kinetic studies of the enzymes in the presence of the synthetic compounds as well as docking studies of the enzymes with the α- and β-pyranose forms of SH7P suggest that the inverted configuration of the products of EEVS and EVS is not due to the preselection of the different forms of the substrate by the enzymes.
Collapse
Affiliation(s)
- Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Philip J. Proteau
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| |
Collapse
|
3
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Sepúlveda D, Campusano S, Moliné M, Barahona S, Baeza M, Alcaíno J, Colabella F, Urzúa B, Libkind D, Cifuentes V. Unraveling the Molecular Basis of Mycosporine Biosynthesis in Fungi. Int J Mol Sci 2023; 24:ijms24065930. [PMID: 36983003 PMCID: PMC10057719 DOI: 10.3390/ijms24065930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Phaffia rhodozyma UCD 67-385 genome harbors a 7873 bp cluster containing DDGS, OMT, and ATPG, encoding 2-desmethy-4-deoxygadusol synthase, O-methyl transferase, and ATP-grasp ligase, respectively, of the mycosporine glutaminol (MG) biosynthesis pathway. Homozygous deletion mutants of the entire cluster, single-gene mutants, and the Δddgs-/-;Δomt-/- and Δomt-/-;Δatpg-/- double-gene mutants did not produce mycosporines. However, Δatpg-/- accumulated the intermediate 4-deoxygadusol. Heterologous expression of the DDGS and OMT or DDGS, OMT, and ATPG cDNAs in Saccharomyces cerevisiae led to 4-deoxygadusol or MG production, respectively. Genetic integration of the complete cluster into the genome of the non-mycosporine-producing CBS 6938 wild-type strain resulted in a transgenic strain (CBS 6938_MYC) that produced MG and mycosporine glutaminol glucoside. These results indicate the function of DDGS, OMT, and ATPG in the mycosporine biosynthesis pathway. The transcription factor gene mutants Δmig1-/-, Δcyc8-/-, and Δopi1-/- showed upregulation, Δrox1-/- and Δskn7-/- showed downregulation, and Δtup6-/- and Δyap6-/- showed no effect on mycosporinogenesis in glucose-containing medium. Finally, comparative analysis of the cluster sequences in several P. rhodozyma strains and the four newly described species of the genus showed the phylogenetic relationship of the P. rhodozyma strains and their differentiation from the other species of the genus Phaffia.
Collapse
Affiliation(s)
- Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Martín Moliné
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | | | - Blanca Urzúa
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380492, Chile
| | - Diego Libkind
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
5
|
Danneels B, Blignaut M, Marti G, Sieber S, Vandamme P, Meyer M, Carlier A. Cyclitol metabolism is a central feature of Burkholderia leaf symbionts. Environ Microbiol 2023; 25:454-472. [PMID: 36451580 DOI: 10.1111/1462-2920.16292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.
Collapse
Affiliation(s)
- Bram Danneels
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Monique Blignaut
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Guillaume Marti
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UT3, INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Marion Meyer
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
6
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Zhou W, Vergis J, Mahmud T. EDB Gene Cluster-Dependent Indole Production Is Responsible for the Ability of Pseudomonas fluorescens NZI7 to Repel Grazing by Caenorhabditis elegans. JOURNAL OF NATURAL PRODUCTS 2022; 85:590-598. [PMID: 35077157 PMCID: PMC9328163 DOI: 10.1021/acs.jnatprod.1c01046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The "EDB" (from "edible") gene cluster, a variant of the ebo cluster of genes found in many bacteria and algae, allows Pseudomonas fluorescens NZI7 (referred to here as "NZI7") to repel grazing by the nematode Caenorhabditis elegans. The mechanism underlying this phenotype is unknown. Here we report that the EDB cluster is involved in the conversion of tryptophan to (1H-indol-3-yl)-oxoacetamide, indole 3-aldehyde, and other indole-derived compounds. Inactivation of the EDB genes in NZI7 resulted in mutants that lack the ability to excrete indole-derived compounds as well as the ability to repel C. elegans. Heterologous expression of the NZI7 EDB cluster in E. coli cultivated in minimal M9 medium containing 2 mM l-tryptophan also released indole derivatives including tryptophol, 3-(hydroxyacetyl)indole, colletotryptin E, and two new dimeric indoles. Expression of the NZI7 EDB cluster in E. coli, cultured in minimal M9 medium and lacking tryptophan, did not produce detectable levels of indole derivatives. Both (1H-indol-3-yl)-oxoacetamide and indole 3-aldehyde showed repellent activity against C. elegans, revealing the mechanism underlying the ability of P. fluorescens NZI7 to repel grazing by C. elegans.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - John Vergis
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
8
|
Zhu XL, Luo YQ, Wang L, Huang YK, He YG, Xie WJ, Liu SL, Shi XX. Novel Stereoselective Syntheses of (+)-Streptol and (-)-1 -epi-Streptol Starting from Naturally Abundant (-)-Shikimic Acid. ACS OMEGA 2021; 6:17103-17112. [PMID: 34250367 PMCID: PMC8264934 DOI: 10.1021/acsomega.1c02502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Novel highly stereoselective syntheses of (+)-streptol and (-)-1-epi-streptol starting from naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the common key intermediate by 11 steps in 40% yield. It was then converted to (+)-streptol by three steps in 72% yield, and it was also converted to (-)-1-epi-streptol by one step in 90% yield. In summary, (+)-streptol and (-)-1-epi-streptol were synthesized from (-)-shikimic acid by 14 and 12 steps in 29 and 36% overall yields, respectively.
Collapse
Affiliation(s)
- Xing-Liang Zhu
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yong-Qiang Luo
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Lei Wang
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yong-Kang Huang
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Wen-Jing Xie
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Shi-Ling Liu
- Zhejiang
Arthur Pharmaceutical Co. Ltd., 3556 Linggongtang Road, Jiake Life Science Park Building 3, Daqiao Town, Nanhu District, Jiaxing, Zhejiang 314000, P. R. China
| | - Xiao-Xin Shi
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Kudo F, Mori A, Koide M, Yajima R, Takeishi R, Miyanaga A, Eguchi T. One-pot enzymatic synthesis of 2-deoxy-scyllo-inosose from d-glucose and polyphosphate. Biosci Biotechnol Biochem 2021; 85:108-114. [PMID: 33577648 DOI: 10.1093/bbb/zbaa025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 11/14/2022]
Abstract
2-Deoxy-scyllo-inosose (2DOI, [2S,3R,4S,5R]-2,3,4,5-tetrahydroxycyclohexan-1-one) is a biosynthetic intermediate of 2-deoxystreptamine-containing aminoglycoside antibiotics, including butirosin, kanamycin, and neomycin. In producer microorganisms, 2DOI is constructed from d-glucose 6-phosphate (G6P) by 2-deoxy-scyllo-inosose synthase (DOIS) with the oxidized form of nicotinamide adenine dinucleotide (NAD+). 2DOI is also known as a sustainable biomaterial for production of aromatic compounds and a chiral cyclohexane synthon. In this study, a one-pot enzymatic synthesis of 2DOI from d-glucose and polyphosphate was investigated. First, 3 polyphosphate glucokinases (PPGKs) were examined to produce G6P from d-glucose and polyphosphate. A PPGK derived from Corynebacterium glutamicum (cgPPGK) was found to be suitable for G6P production under ordinary enzymatic conditions. Next, 7 DOISs were examined for the one-pot enzymatic reaction. As a result, cgPPGK and BtrC, the latter of which is a DOIS derived from the butirosin producer Bacillus circulans, achieved nearly full conversion of d-glucose to 2DOI in the presence of polyphosphate.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Ayaka Mori
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Mai Koide
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Ryo Yajima
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Ryohei Takeishi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan
| |
Collapse
|
10
|
Llewellyn CA, Greig C, Silkina A, Kultschar B, Hitchings MD, Farnham G. Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912. Sci Rep 2020; 10:20638. [PMID: 33244119 PMCID: PMC7693272 DOI: 10.1038/s41598-020-77402-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
The "UV sunscreen" compounds, the mycosporine-like amino acids (MAAs) are widely reported in cyanobacteria and are known to be induced under ultra-violet (UV) light. However, the impact of far red (FR) light on MAA biosynthesis has not been studied. We report results from two experiments measuring transcriptional regulation of MAA and aromatic amino acid pathways in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. The first experiment, comparing UV with white light, shows the expected upregulation of the characteristic MAA mys gene cluster. The second experiment, comparing FR with white light, shows that three genes of the four mys gene cluster encoding up to mycosporine-glycine are also upregulated under FR light. This is a new discovery. We observed corresponding increases in MAAs under FR light using HPLC analysis. The tryptophan pathway was upregulated under UV, with no change under FR. The tyrosine and phenylalanine pathways were unaltered under both conditions. However, nitrate ABC transporter genes were upregulated under UV and FR light indicating increased nitrogen requirement under both light conditions. The discovery that MAAs are upregulated under FR light supports MAAs playing a role in photon dissipation and thermoregulation with a possible role in contributing to Earth surface temperature regulation.
Collapse
Affiliation(s)
- Carole A Llewellyn
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK.
| | - Carolyn Greig
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Alla Silkina
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Bethan Kultschar
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK
| | | | - Garry Farnham
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, PL4 8AA, UK
| |
Collapse
|
11
|
López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020; 5:655-667. [DOI: 10.1038/s41564-020-0710-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
|
12
|
Abstract
Sunscreen-containing skincare products protect the skin from damage caused by sun exposure. However, many of them contain oxybenzone and/or octinoxate, which have been reported to be toxic to juvenile coral and to cause coral bleaching. Thus, there is a growing need for new sunscreen compounds that are less harmful to the environment. Here, we report an engineered biosynthetic pathway employing genes from a vertebrate and two Gram-(+) bacteria that forms novel sunscreen compounds with hybrid structures of gadusol and mycosporine-like amino acids, both of which are found in marine environments. These compounds, named gadusporines, have unique UV absorbance at 340 nm, expanding the range of mycosporine- and gadusol-based sunscreen products. The synthesis of gadusporines in Streptomyces coelicolor establishes a platform for the design and production of novel sunscreens.
Collapse
Affiliation(s)
- Andrew R. Osborn
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
13
|
Park SH, Lee K, Jang JW, Hahn JS. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose. ACS Synth Biol 2019; 8:346-357. [PMID: 30586497 DOI: 10.1021/acssynbio.8b00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shinorine, a mycosporine-like amino acid (MAA), is a small molecule sunscreen produced in some bacteria. In this study, by introducing shinorine biosynthetic genes from cyanobacteria Nostoc punctiform into Saccharomyces cerevisiae, we successfully constructed yeast strains capable of producing shinorine. Sedoheptulose 7-phosphate (S7P), an intermediate of the pentose phosphate pathway, is a key substrate for shinorine biosynthesis. To increase the S7P pool, xylose, which is assimilated via the pentose phosphate pathway, was used as a carbon source after introducing xylose assimilation genes from Scheffersomyces stipitis into the shinorine-producing strain. The resulting xylose-fermenting strain produced a trace amount of shinorine when cells were grown in glucose, but shinorine production was dramatically increased by adding xylose in the medium. Shinorine production was further improved by modulating the pentose phosphate pathway through deleting TAL1 and overexpressing STB5 and TKL1. The final engineered strain JHYS17-4 produced 31.0 mg/L (9.62 mg/g DCW) of shinorine in the optimized medium containing 8 g/L of xylose and 12 g/L of glucose, demonstrating that S. cerevisiae is a promising host to produce this natural sunscreen material.
Collapse
Affiliation(s)
- Seong-Hee Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyusung Lee
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Jae Woo Jang
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Hsiao CC, Sieber S, Georgiou A, Bailly A, Emmanouilidou D, Carlier A, Eberl L, Gademann K. Synthesis and Biological Evaluation of the Novel Growth Inhibitor Streptol Glucoside, Isolated from an Obligate Plant Symbiont. Chemistry 2019; 25:1722-1726. [PMID: 30508325 DOI: 10.1002/chem.201805693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/29/2018] [Indexed: 12/23/2022]
Abstract
The plant Psychotria kirkii hosts an obligatory bacterial symbiont, Candidatus Burkholderia kirkii, in nodules on their leaves. Recently, a glucosylated derivative of (+)-streptol, (+)-streptol glucoside, was isolated from the nodulated leaves and was found to possess a plant growth inhibitory activity. To establish a structure-activity relationship study, a convergent strategy was developed to obtain several pseudosugars from a single synthetic precursor. Furthermore, the glucosylation of streptol was investigated in detail and conditions affording specifically the α or β glucosidic anomer were identified. Although (+)-streptol was the most active compound, its concentration in P. kirkii plant leaves extract was approximately ten-fold lower than that of (+)-streptol glucoside. These results provide compelling evidence that the glucosylation of (+)-streptol protects the plant host against the growth inhibitory effect of the compound, which might constitute a molecular cornerstone for this successful plant-bacteria symbiosis.
Collapse
Affiliation(s)
- Chien-Chi Hsiao
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Antri Georgiou
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Aurélien Bailly
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Despina Emmanouilidou
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Aurélien Carlier
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
15
|
Dlugosch M, Ma X, Yang S, Banwell MG, Ma C, Ward JS, Carr P. Syntheses of Structurally and Stereochemically Varied Forms of C7N Aminocyclitol Derivatives from Enzymatically Derived and Homochiral cis-1,2-Dihydrocatechols. Org Lett 2018; 20:7225-7228. [DOI: 10.1021/acs.orglett.8b03149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Michael Dlugosch
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Xinghua Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Shuxin Yang
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G. Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Chenxi Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S. Ward
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Paul Carr
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Abstract
Pseudo-oligosaccharides are microbial-derived secondary metabolites whose chemical structures contain pseudosugars (glycomimetics). Due to their high resemblance to the molecules of life (carbohydrates), most pseudo-oligosaccharides show significant biological activities. Some of them have been used as drugs to treat human and plant diseases. Because of their significant economic value, efforts have been put into understanding their biosynthesis, optimizing their fermentation conditions, and engineering their metabolic pathways to obtain better production yields. A number of unusual enzymes participating in diverse biosynthetic pathways to pseudo-oligosaccharides have been reported. Various methods and conditions to improve the production yields of the target compounds and eliminate byproducts have also been developed. This review article describes recent studies on the biosynthesis, fermentation optimization, and metabolic engineering of high-value pseudo-oligosaccharides.
Collapse
|
17
|
Pinto-Carbó M, Gademann K, Eberl L, Carlier A. Leaf nodule symbiosis: function and transmission of obligate bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:23-31. [PMID: 29452904 DOI: 10.1016/j.pbi.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Various plant species establish intimate symbioses with bacteria within their aerial organs. The bacteria are contained within nodules or glands often present in distinctive patterns on the leaves, and have been used as taxonomic marker since the early 20th century. These structures are present in very diverse taxa, including dicots (Rubiaceae and Primulaceae) and monocots (Dioscorea). The symbionts colonize the plants throughout their life cycles and contribute bioactive secondary metabolites to the association. In this review, we present recent progress in the understanding of these plant-bacteria symbioses, including the modes of transmission, distribution and roles of the symbionts.
Collapse
Affiliation(s)
- Marta Pinto-Carbó
- Department of Microbiology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, University of Zurich, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
18
|
Phyllomeroterpenoids A-C, Multi-biosynthetic Pathway Derived Meroterpenoids from the TCM Endophytic Fungus Phyllosticta sp. and their Antimicrobial Activities. Sci Rep 2017; 7:12925. [PMID: 29018263 PMCID: PMC5635028 DOI: 10.1038/s41598-017-13407-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Phyllomeroterpenoids A−C (1−3), multi-biosynthetic pathway derived meroterpenoids from amino acid/pentose phosphate/terpenoid pathways, were isolated from the TCM endophytic fungus Phyllosticta sp. J13-2-12Y, together with six biosynthetically related compounds (4−9). All structures were determined by extensive spectroscopic analysis, chemical derivatization, and ECD experiments. A plausible biosynthetic pathway of 1−3 was proposed. In addition, the antimicrobial activities of all isolated compounds were evaluated against Staphylococcus aureus 209P (bacterium) and Candida albicans FIM709 (fungus).
Collapse
|
19
|
Osborn AR, Kean KM, Karplus PA, Mahmud T. The sedoheptulose 7-phosphate cyclases and their emerging roles in biology and ecology. Nat Prod Rep 2017; 34:945-956. [PMID: 28497152 DOI: 10.1039/c7np00017k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering up to: 1999-2016This highlight covers a family of enzymes of growing importance, the sedoheptulose 7-phosphate cyclases, initially of interest due to their involvement in the biosynthesis of pharmaceutically relevant secondary metabolites. More recently, these enzymes have been found throughout Prokarya and Eukarya, suggesting their broad potential biological roles in nature.
Collapse
Affiliation(s)
- Andrew R Osborn
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507, USA.
| | | | | | | |
Collapse
|