1
|
Nava M, Rowe SJ, Taylor RJ, Kahne D, Nocera DG. Determination of Initial Rates of Lipopolysaccharide Transport. Biochemistry 2024; 63:2440-2448. [PMID: 39264328 PMCID: PMC11447908 DOI: 10.1021/acs.biochem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the lipopolysaccharide transport proteins, LptB2FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min-1 per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.
Collapse
Affiliation(s)
| | | | - Rebecca J. Taylor
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Kim SJ, Jo J, Kim J, Ko KS, Lee W. Polymyxin B nonapeptide potentiates the eradication of Gram-negative bacterial persisters. Microbiol Spectr 2024; 12:e0368723. [PMID: 38391225 PMCID: PMC10986493 DOI: 10.1128/spectrum.03687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotic-resistant Gram-negative bacteria remain a globally leading cause of bacterial infection-associated mortality, and it is imperative to identify novel therapeutic strategies. Recently, the advantage of using antibacterials selective against Gram-negative bacteria has been demonstrated with polymyxins that specifically target the lipopolysaccharides of Gram-negative bacteria. However, the severe cytotoxicity of polymyxins limits their clinical use. Here, we demonstrate that polymyxin B nonapeptide (PMBN), a polymyxin B derivative without the terminal amino acyl residue, can significantly enhance the effectiveness of commonly used antibiotics against only Gram-negative bacteria and their persister cells. We show that although PMBN itself does not exhibit antibacterial activity or cytotoxicity well above the 100-fold minimum inhibitory concentration of polymyxin B, PMBN can increase the potency of co-treated antibiotics. We also demonstrate that using PMBN in combination with other antibiotics significantly reduces the frequency of resistant mutant formation. Together, this work provides evidence of the utilities of PMBN as a novel potentiator for antibiotics against Gram-negative bacteria and insights for the eradication of bacterial persister cells during antibiotic treatment. IMPORTANCE The significance of our study lies in addressing the problem of antibiotic-resistant Gram-negative bacteria, which continue to be a global cause of mortality associated with bacterial infections. Therefore, identifying innovative therapeutic approaches is an urgent need. Recent research has highlighted the potential of selective antibacterials like polymyxins, which specifically target the lipopolysaccharides of Gram-negative bacteria. However, the clinical use of polymyxins is limited by their severe cytotoxicity. This study unveils the effectiveness of polymyxin B nonapeptide (PMBN) in significantly enhancing the eradication of persister cells in Gram-negative bacteria. Although PMBN itself does not exhibit antibacterial activity or cytotoxicity, it remarkably reduces persister cells during the treatment of antibiotics. Moreover, combining PMBN with other antibiotics reduces the emergence of resistant mutants. Our research emphasizes the utility of PMBN as a novel potentiator to decrease persister cells during antibiotic treatments for Gram-negative bacteria.
Collapse
Affiliation(s)
- Sun Ju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeongwoo Jo
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Lin Y, Liang X, Li Z, Gong T, Ren B, Li Y, Peng X. Omics for deciphering oral microecology. Int J Oral Sci 2024; 16:2. [PMID: 38195684 PMCID: PMC10776764 DOI: 10.1038/s41368-023-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
5
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
6
|
Application of antibiotic-derived fluorescent probes to bacterial studies. Methods Enzymol 2022; 665:1-28. [DOI: 10.1016/bs.mie.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan-Park MB, Xing B. Cyanine-Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew Chem Int Ed Engl 2021; 60:16900-16905. [PMID: 34018295 DOI: 10.1002/anie.202104100] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Real-time monitoring of the evolution of bacterial infection-associated multiple radical species is critical to accurately profile the pathogenesis and host-defense mechanisms. Here, we present a unique dual wavelength near-infrared (NIR) cyanine-dyad molecular probe (HCy5-Cy7) for simultaneous monitoring of reactive oxygen and nitrogen species (RONS) variations both in vitro and in vivo. HCy5-Cy7 specifically turns on its fluorescence at 660 nm via superoxide or hydroxyl radical (O2 .- , . OH)-mediated oxidation of reduced HCy5 moiety to Cy5, while peroxynitrite or hypochlorous species (ONOO- , ClO- )-induced Cy7 structural degradation causes the emission turn-off at 800 nm. Such multispectral but reverse signal responses allow multiplex manifestation of in situ oxidative and nitrosative stress events during the pathogenic and defensive processes in both bacteria-infected macrophage cells and living mice. Most importantly, this study may also provide new perspectives for understanding the bacterial pathogenesis and advancing the precision medicine against infectious diseases.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Thang Do Cong
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore, Singapore
| |
Collapse
|
8
|
Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan‐Park MB, Xing B. Cyanine‐Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Thang Do Cong
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive 637459 Singapore Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Mary B. Chan‐Park
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive 637459 Singapore Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637459 Singapore Singapore
| |
Collapse
|
9
|
Lin L, Du Y, Song J, Wang W, Yang C. Imaging Commensal Microbiota and Pathogenic Bacteria in the Gut. Acc Chem Res 2021; 54:2076-2087. [PMID: 33856204 DOI: 10.1021/acs.accounts.1c00068] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a newly discovered organ, gut microbiota has been extensively studied in the last two decades, with their highly diverse and fundamental roles in the physiology of many organs and systems of the host being gradually revealed. However, most of the current research heavily relies on DNA sequencing-based methodologies. To truly understand the complex physiological and pathological functions demonstrated by commensal and pathogenic gut bacteria, we need more powerful methods and tools, among which imaging strategies suitable for approaching this ecosystem in different settings are one of the most desirable. Although the phrase gut "dark matter" is often used in referring to the unculturability of many gut bacteria, it is also applicable to describing the formidable difficulties in visualizing these microbes in the intestines. To develop suitable and versatile chemical and biological tools for imaging bacteria in the gut, great efforts have been devoted in the past several years.In this Account, we highlight the recent progress made by our group and other laboratories in the development of visualization strategies for commensal microbiota and pathogenic bacteria in the gut. First, we summarize our efforts toward the development of derivatized antibiotic staining probes that directly bind to specific bacterial surface structures for selective labeling of different groups of gut bacteria. Next, metabolic labeling-based imaging strategies, using unnatural amino acids, unnatural sugars, and stable isotopes, for imaging gut bacteria on various scales and in different settings are discussed in detail. We then introduce nucleic acid staining-based bacterial imaging, using either general nucleic acid-binding reagents or selective-labeling techniques (e.g., fluorescence in situ hybridization) to meet the diverse needs in gut microbiota research. This classical imaging strategy has witnessed a renaissance owing to a series of new technical advancements. Furthermore, despite the notorious difficulties of performing genetic manipulations in many commensal gut bacteria, great effort has been made recently in engineering gut bacteria with reporters like fluorescent proteins and acoustic response proteins.Our perspectives on the current limitations of the chemical tools and strategies and the future directions for improvement are also presented. We hope that this Account can offer valuable references to spark new ideas and invite new efforts to help decipher the complex biological and chemical interactions between commensal microbiota and pathogenic bacteria and the hosts.
Collapse
Affiliation(s)
- Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yahui Du
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
11
|
Wang KC, Huang CH, Chang PR, Huang MT, Fang SB. Role of wzxE in Salmonella Typhimurium lipopolysaccharide biosynthesis and interleukin-8 secretion regulation in human intestinal epithelial cells. Microbiol Res 2020; 238:126502. [PMID: 32535400 DOI: 10.1016/j.micres.2020.126502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
In Salmonella Typhimurium (S. Typhimurium), lipopolysaccharide (LPS) anchored on the bacterial outer membrane is a major immune stimulus that can broadly activate immune cells and induce innate immune responses. wzxE is involved in bacterial LPS biosynthesis but has rarely been reported in Salmonella; wzxE encodes a flipase that can flip the precursor of LPS across the membrane into the periplasm space. Our preliminary data showed that the wzxE transposon mutant of S. Typhimurium could not significantly adhere to and invade into HEp-2 cells, but the mechanism remains unknown. In this study, we infected human LS174T, Caco-2, HeLa, and THP-1 cells with the wild-type S. Typhimurium strain SL1344, its wzxE mutant, and its complemented strain. wzxE depletion significantly attenuated bacterial adhesion and internalization in the four cell types. In addition, the postinfectious production of interleukin-8 (IL-8) was significantly decreased in the Caco-2 cells infected with the wzxE mutant. Bacterial LPS stained with polymyxin B probe also exhibited a reduced signal in the wzxE mutant. The silver staining of purified LPS demonstrated a significant reduction of the O-antigen (OAg) chain in the wzxE mutant. To confirm the role of OAg in the wzxE mutant during infection, we treated the HT-29 cells with the S. Typhimurium strain SL1344, its wzxE mutant, and their purified LPS, which revealed significantly decreased IL-8 secretion in the HT-29 cells treated with purified LPS from the wzxE mutant and with the wzxE mutant. In conclusion, wzxE mediates LPS biosynthesis and plays a major role in bacterial pathogenesis by regulating OAg flipping.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Pei-Ru Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
New insights into lipopolysaccharide assembly and export. Curr Opin Chem Biol 2019; 53:37-43. [DOI: 10.1016/j.cbpa.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/22/2023]
|
13
|
Abstract
Genes necessary for the survival or reproduction of a cell are an attractive class of antibiotic targets. Studying essential genes by classical genetics, however, is inherently problematic because it is impossible to knock them out. Here, we screened a set of predicted essential genes for growth inhibition using CRISPR-interference (CRISPRi) knockdown in the human pathogen Vibrio cholerae We demonstrate that CRISPRi knockdown of 37 predicted essential genes inhibits V. cholerae viability, thus validating the products of these genes as potential drug target candidates. V. cholerae was particularly vulnerable to lethal inhibition of the system for lipoprotein transport (Lol), a central hub for directing lipoproteins from the inner to the outer membrane (OM), with many of these lipoproteins coordinating their own essential processes. Lol depletion makes cells prone to plasmolysis and elaborate membrane reorganization, during which the periplasm extrudes into a mega outer membrane vesicle or "MOMV" encased by OM which dynamically emerges specifically at plasmolysis sites. Our work identifies the Lol system as an ideal drug target, whose inhibition could deplete gram-negative bacteria of numerous proteins that reside in the periplasm.
Collapse
|
14
|
Islam ASM, Sasmal M, Maiti D, Dutta A, Ganguly S, Katarkar A, Gangopadhyay S, Ali M. Phenazine-Embedded Copper(II) Complex as a Fluorescent Probe for the Detection of NO and HNO with a Bioimaging Application. ACS APPLIED BIO MATERIALS 2019; 2:1944-1955. [PMID: 35030683 DOI: 10.1021/acsabm.9b00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Mihir Sasmal
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Debjani Maiti
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Ananya Dutta
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Sholanki Ganguly
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, Epalinges 1066, Switzerland
| | - Sumana Gangopadhyay
- Department of Chemistry, Gurudas College, Narkeldanga, Kolkata, West Bengal 700 054, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
- Vice-Chancellor, Aliah University, ll-A/27, Action Area II, Newtown, Kolkata, West Bengal 700 160, India
| |
Collapse
|
15
|
Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 2019; 24:molecules24020249. [PMID: 30641878 PMCID: PMC6359160 DOI: 10.3390/molecules24020249] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
Abstract
Polymyxins (polymyxin B (PMB) and polymyxin E (colistin)) are cyclic lipodecapeptide antibiotics, highly basic due to five free amino groups, and rapidly bactericidal against Gram-negative bacteria, such as the majority of Enterobacteriaceae as well as Acinetobacter baumannii and Pseudomonas aeruginosa. Their clinical use was abandoned in the 1960s because of nephrotoxicity and because better-tolerated drugs belonging to other antibiotic classes were introduced. Now, due to the global dissemination of extremely-drug resistant Gram-negative bacterial strains, polymyxins have resurged as the last-line drugs against those strains. Novel derivatives that are less toxic and/or more effective at tolerable doses are currently under preclinical development and their properties have recently been described in several extensive reviews. Other derivatives lack any direct bactericidal activity but damage the outermost permeability barrier, the outer membrane, of the target bacteria and make it more permeable to many other antibiotics. This review describes the properties of three thus far best-characterized “permeabilizer” derivatives, i.e., the classic permeabilizer polymyxin B nonapeptide (PMBN), NAB7061, and SPR741/NAB741, a compound that recently successfully passed the clinical phase 1. Also, a few other permeabilizer compounds are brought up.
Collapse
|
16
|
Xie R, Taylor RJ, Kahne D. Outer Membrane Translocon Communicates with Inner Membrane ATPase To Stop Lipopolysaccharide Transport. J Am Chem Soc 2018; 140:12691-12694. [PMID: 30253645 PMCID: PMC6200140 DOI: 10.1021/jacs.8b07656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The survival of Gram-negative bacteria depends on assembly of the asymmetric outer membrane, which creates a barrier that prevents entry of toxic molecules including antibiotics. The outer leaflet of the outer membrane is composed of lipopolysaccharide, which is made at the inner membrane and pushed across a protein bridge that spans the inner and outer membranes. We have developed a fluorescent assay to follow lipopolysaccharide (LPS) transport across a bridge linking proteoliposomes that mimic the inner and outer membranes. We show that LPS is delivered to the leaflet of the outer membrane proteoliposome that corresponds to the outer leaflet of the membrane in a cell. Transport stops long before substrates at the inner membrane are exhausted. Using mutants of the transport machinery, we find that the final amount of LPS delivered into the membrane depends on the affinity of the outer membrane translocon for LPS. Furthermore, ATP hydrolysis depends on delivery of LPS into the outer membrane. Therefore, the transport process is regulated by the outer membrane translocon causing ATP hydrolysis in the inner membrane proteoliposome to stop. Negative feedback from the outer membrane to the inner membrane provides a mechanism for long distance control over LPS transport.
Collapse
Affiliation(s)
- Ran Xie
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Rebecca J. Taylor
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
17
|
Dong B, Kong X, Lin W. Reaction-Based Fluorescent Probes for the Imaging of Nitroxyl (HNO) in Biological Systems. ACS Chem Biol 2018; 13:1714-1720. [PMID: 29210560 DOI: 10.1021/acschembio.7b00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitroxyl (HNO) has been identified as an important signaling molecule in biological systems and plays critical roles in many physiological processes. Fluorescence imaging could provide a robust approach to explore the biological formation of HNO and its physiological functions. Herein, we summarize the organic reaction types for constructing HNO probes and specifically focus on review of the recent advances in the development of the reaction-based HNO probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
18
|
Peterson E, Joseph C, Peterson H, Bouwman R, Tang S, Cannon J, Sinniah K, Choi SK. Measuring the Adhesion Forces for the Multivalent Binding of Vancomycin-Conjugated Dendrimer to Bacterial Cell-Wall Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7135-7146. [PMID: 29792710 DOI: 10.1021/acs.langmuir.8b01137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multivalent ligand-receptor interaction provides the fundamental basis for the hypothetical notion that high binding avidity relates to the strong force of adhesion. Despite its increasing importance in the design of targeted nanoconjugates, an understanding of the physical forces underlying the multivalent interaction remains a subject of urgent investigation. In this study, we designed three vancomycin (Van)-conjugated dendrimers G5(Van) n ( n = mean valency = 0, 1, 4) for bacterial targeting with generation 5 (G5) poly(amidoamine) dendrimer as a multivalent scaffold and evaluated both their binding avidity and physical force of adhesion to a bacterial model surface by employing surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. The SPR experiment for these conjugates was performed in a biosensor chip surface immobilized with a bacterial cell-wall peptide Lys-d-Ala-d-Ala. Of these, G5(Van)4 bound most tightly with a KD of 0.34 nM, which represents an increase in avidity by 2 or 3 orders of magnitude relative to a monovalent conjugate G5(Van)1 or free vancomycin, respectively. By single-molecule force spectroscopy, we measured the adhesion force between G5(Van) n and the same cell-wall peptide immobilized on the surface. The distribution of adhesion forces increased in proportion to vancomycin valency with the mean force of 134 pN at n = 4 greater than 96 pN at n = 1 at a loading rate of 5200 pN/s. In summary, our results are strongly supportive of the positive correlation between the avidity and adhesion force in the multivalent interaction of vancomycin nanoconjugates.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | | - Hannah Peterson
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | - Rachael Bouwman
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | | | | - Kumar Sinniah
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | |
Collapse
|
19
|
Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes. ACS Infect Dis 2018. [PMID: 29534563 DOI: 10.1021/acsinfecdis.8b00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Collapse
Affiliation(s)
- Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Ge Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy C. Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc Natl Acad Sci U S A 2018; 115:6834-6839. [PMID: 29735709 DOI: 10.1073/pnas.1804670115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.
Collapse
|
21
|
Wang W, Chen X. Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9236-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wu Y, Shi A, Li Y, Zeng H, Chen X, Wu J, Fan X. A near-infrared xanthene fluorescence probe for monitoring peroxynitrite in living cells and mouse inflammation model. Analyst 2018; 143:5512-5519. [DOI: 10.1039/c8an01107a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel near-infrared xanthene fluorescence probe for monitoring peroxynitrite in vitro and in vivo.
Collapse
Affiliation(s)
- Yongquan Wu
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| | - Aiping Shi
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| | - Yuanyan Li
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| | - Hong Zeng
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| | - Xiaoyong Chen
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| | - Jie Wu
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| | - Xiaolin Fan
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou Jiangxi 341000
- P. R. China
| |
Collapse
|
23
|
Nilsson I, Grove K, Dovala D, Uehara T, Lapointe G, Six DA. Molecular characterization and verification of azido-3,8-dideoxy-d- manno-oct-2-ulosonic acid incorporation into bacterial lipopolysaccharide. J Biol Chem 2017; 292:19840-19848. [PMID: 29018092 DOI: 10.1074/jbc.m117.814962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/05/2017] [Indexed: 11/06/2022] Open
Abstract
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of LPS in the outer leaflet of the Gram-negative bacterial outer membrane. Although labeling of Escherichia coli with the chemical reporter 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3) has been reported, its incorporation into LPS has not been directly shown. We have now verified Kdo-N3 incorporation into E. coli LPS at the molecular level. Using microscopy and PAGE analysis, we show that Kdo-N3 is localized to the outer membrane and specifically incorporates into rough and deep-rough LPS. In an E. coli strain lacking endogenous Kdo biosynthesis, supplementation with exogenous Kdo restored full-length core-LPS, which suggests that the Kdo biosynthetic pathways might not be essential in vivo in the presence of sufficient exogenous Kdo. In contrast, exogenous Kdo-N3 only restored a small fraction of core LPS with the majority incorporated into truncated LPS. The truncated LPS were identified as Kdo-N3-lipid IVA and (Kdo-N3)2-lipid IVA by MS analysis. The low level of Kdo-N3 incorporation could be partly explained by a 6-fold reduction in the specificity constant of the CMP-Kdo synthetase KdsB with Kdo-N3 compared with Kdo. These results indicate that the azido moiety in Kdo-N3 interferes with its utilization and may limit its utility as a tracer of LPS biosynthesis and transport in E. coli We propose that our findings will be helpful for researchers using Kdo and its chemical derivatives for investigating LPS biosynthesis, transport, and assembly in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Kerri Grove
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California 94608
| | | | | | - Guillaume Lapointe
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California 94608
| | - David A Six
- From the Departments of Infectious Diseases and
| |
Collapse
|