1
|
Skelly PJ, Nation CS, Da'Dara AA. Schistosoma mansoni and the purinergic halo. Trends Parasitol 2022; 38:1080-1088. [PMID: 36182536 PMCID: PMC9669209 DOI: 10.1016/j.pt.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
Intravascular schistosomes may control immune and hemostatic responses by regulating the nature and amount of selected host purinergic signaling molecules - such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) - surrounding them. Such metabolites are collectively known as the worm's 'purinergic halo'. Host-interactive, membrane-bound, tegumental ectonucleotidases, notably SmATPDase1, SmNPP5, SmAP and SmNACE, can degrade proinflammatory, prothrombotic and immunomodulatory purinergic metabolites like those listed. A common catabolic product is the anti-inflammatory metabolite adenosine that can additionally be taken in by the worms as food. We envision the tegumental ectonucleotidases as having a twofold role at the worm surface: first, they degrade potentially harmful host signaling molecules, and second, they generate vital nutrients around the worms from where these can be conveniently imported.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Catherine S Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Akram A Da'Dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
2
|
NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022; 479:1165-1180. [PMID: 35593185 DOI: 10.1042/bcj20210784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme - the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochemical characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The Km values of the two enzymes for NAD at physiological pH differ: SmNPP5, Km=340µM±44; SmNACE, Km=49µM±4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form nicotinamide mononucleotide (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and adenosine diphosphate ribose (ADPR). Each enzyme can process the other's reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic analysis of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chemical inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection.
Collapse
|
3
|
Nation CS, Da'Dara AA, Skelly PJ. The essential schistosome tegumental ectoenzyme SmNPP5 can block NAD-induced T cell apoptosis. Virulence 2020; 11:568-579. [PMID: 32441549 PMCID: PMC7549896 DOI: 10.1080/21505594.2020.1770481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Infection with intravascular platyhelminths of the genus Schistosoma can result in the debilitating disease schistosomiasis. Schistosomes (blood flukes) can survive in the host for many years. We hypothesize that proteins on their host-interactive surface modify the worm's external environment to help insure worm survival. Previously, we have shown that a surface ectoenzyme of Schistosoma mansoni, SmNPP5 - a nucleotide pyrophosphatase/phosphodiesterase - can cleave ADP and block platelet aggregation in vitro. In this work, we show that both adult schistosomes and recombinant SmNPP5 can cleave the exogenous purinergic signaling molecule nicotinamide adenine dinucleotide (NAD). In doing so, worms and rSmNPP5 can prevent NAD-induced apoptosis of T cells in vitro. Since regulatory T cells (Tregs) are especially prone to such NAD-induced cell death (NICD), we hypothesize that schistosome cleavage of NAD promotes Treg survival which creates a more immunologically hospitable environment for the worms in vivo. In addition to SmNPP5, schistosomes express another host-interactive NAD-degrading enzyme, SmNACE. We successfully suppressed the expression of SmNPP5 and SmNACE (singly or together) using RNAi. Only SmNPP5-suppressed worms, and not SmNACE-suppressed worms, were significantly impaired in their ability to cleave exogenous NAD compared to controls. Therefore, we contend that ectoenzyme SmNPP5 on the surface of the worm is primarily responsible for extracellular NAD cleavage and that this helps modulate the host immune environment by preventing Treg cell death.
Collapse
Affiliation(s)
- Catherine S Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University , North Grafton, MA, USA
| | - Akram A Da'Dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University , North Grafton, MA, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University , North Grafton, MA, USA
| |
Collapse
|
4
|
Schultz MD, Dadali T, Jacques SA, Muller-Steffner H, Foote JB, Sorci L, Kellenberger E, Botta D, Lund FE. Inhibition of the NAD salvage pathway in schistosomes impairs metabolism, reproduction, and parasite survival. PLoS Pathog 2020; 16:e1008539. [PMID: 32459815 PMCID: PMC7252647 DOI: 10.1371/journal.ppat.1008539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
NAD, a key co-enzyme required for cell metabolism, is synthesized via two pathways in most organisms. Since schistosomes apparently lack enzymes required for de novo NAD biosynthesis, we evaluated whether these parasites, which infect >200 million people worldwide, maintain NAD homeostasis via the NAD salvage biosynthetic pathway. We found that intracellular NAD levels decline in schistosomes treated with drugs that block production of nicotinamide or nicotinamide mononucleotide–known NAD precursors in the non-deamidating salvage pathway. Moreover, in vitro inhibition of the NAD salvage pathway in schistosomes impaired egg production, disrupted the outer membranes of both immature and mature parasites and caused loss of mobility and death. Inhibiting the NAD salvage pathway in schistosome-infected mice significantly decreased NAD levels in adult parasites, which correlated with reduced egg production, fewer liver granulomas and parasite death. Thus, schistosomes, unlike their mammalian hosts, appear limited to one metabolic pathway to maintain NAD-dependent metabolic processes. Schistosomiasis (snail fever) is a deadly parasitic disease that affects more than 200 million people worldwide and, if not treated, can lead to death. This disease is caused by parasitic worms called schistosomes that feed on the host blood and lay hundreds of eggs each day that damage the liver and kidneys. Therapies to treat schistosomiasis are limited. The most widely-used anti-schistosomal drug, praziquantel, is not effective against immature parasites and adult worms can, in some cases, become resistant to this drug. It is therefore important to find new therapies to treat this deadly disease. In this study, we observed that schistosomes cannot use amino acids to make Nicotinamide Adenine Dinucleotide (NAD)–a key cellular metabolite found in all living organisms. Instead, these parasites salvage NAD by scavenging vitamins from the host. We observed that disruption of this NAD salvage pathway negatively impacts metabolism, reproduction and survival of both adult and immature worms. As such, targeting the parasite’s NAD salvage pathway is a promising therapeutic approach for the treatment of snail fever.
Collapse
Affiliation(s)
- Michael D. Schultz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tulin Dadali
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sylvain A. Jacques
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center, Faculté de Pharmacie, Illkirch, France
| | - Hélène Muller-Steffner
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center, Faculté de Pharmacie, Illkirch, France
| | - Jeremy B. Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Esther Kellenberger
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center, Faculté de Pharmacie, Illkirch, France
| | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Frances E. Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
5
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
6
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|