1
|
Dorival J, Yuan H, Walker AS, Tang GL, Eichman BF. Yatakemycin biosynthesis requires two deoxyribonucleases for toxin self-resistance. RSC Chem Biol 2024:d4cb00203b. [PMID: 39649339 PMCID: PMC11621827 DOI: 10.1039/d4cb00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024] Open
Abstract
The highly active natural product yatakemycin (YTM) from Streptomyces sp. TP-A0356 is a potent DNA damaging agent with antimicrobial and antitumor properties. The YTM biosynthesis gene cluster (ytk) contains several toxin self-resistance genes. Of these, ytkR2 encodes a DNA glycosylase that is important for YTM production and host survival by excising lethal YTM-adenine lesions from the genome, presumably initiating a base excision repair (BER) pathway. However, the genes involved in repair of the resulting apurinic/apyrimidinic (AP) site as the second BER step have not been identified. Here, we show that ytkR4 and ytkR5 are essential for YTM production and encode deoxyribonucleases related to other known DNA repair nucleases. Purified YtkR4 and YtkR5 exhibit AP endonuclease activity specific for YtkR2-generated AP sites, providing a basis for BER of the toxic AP intermediate produced from YTM-adenine excision and consistent with co-evolution of ytkR2, ytkR4, and ytkR5. YtkR4 and YtkR5 also exhibit 3'-5' exonuclease activity with differing substrate specificities. The YtkR5 exonuclease is capable of digesting through a YTM-DNA lesion and may represent an alternative repair mechanism to BER. We also show that ytkR4 and ytkR5 homologs are often clustered together in putative gene clusters related to natural product production, consistent with non-redundant roles in repair of other DNA adducts derived from genotoxic natural products.
Collapse
Affiliation(s)
- Jonathan Dorival
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
| | - Hua Yuan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Allison S Walker
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
- Department of Chemistry, Vanderbilt University Nashville Tennessee USA
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
- Department of Biochemistry, Vanderbilt University School of Medicine Nashville Tennessee USA
| |
Collapse
|
2
|
Nie L, Wei T, Cao M, Lyu Y, Wang S, Feng Z. Biosynthesis of coelulatin for the methylation of anthraquinone featuring HemN-like radical S-adenosyl-L-methionine enzyme. Front Microbiol 2022; 13:1040900. [PMID: 36466681 PMCID: PMC9714029 DOI: 10.3389/fmicb.2022.1040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Bacterial aromatic polyketides are usually biosynthesized by the type II polyketide synthase (PKS-II) system. Advances in deoxyribonucleic acid (DNA) sequencing, informatics, and biotechnologies have broadened opportunities for the discovery of aromatic polyketides. Meanwhile, metagenomics is a biotechnology that has been considered as a promising approach for the discovery of novel natural products from uncultured bacteria. Here, we cloned a type II polyketide biosynthetic gene cluster (BGC) from the soil metagenome, and the heterologous expression of this gene cluster in Streptomyces coelicolor M1146 resulted in the production of three anthraquinones, two of which (coelulatins 2 and 3) had special hydroxymethyl and methyloxymethyl modifications at C2 of the polyketide scaffold. Gene deletion and in vitro biochemical characterization indicated that the HemN-like radical S-adenosyl-L-methionine (SAM) enzyme CoeI exhibits methylation and is involved in C2 modification.
Collapse
Affiliation(s)
- Lishuang Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Wei
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Engelbrecht A, Wolf F, Esch A, Kulik A, Kozhushkov SI, de Meijere A, Hughes CC, Kaysser L. Discovery of a Cryptic Nitro Intermediate in the Biosynthesis of the 3-( trans-2'-Aminocyclopropyl)alanine Moiety of Belactosin A. Org Lett 2022; 24:736-740. [PMID: 34990553 DOI: 10.1021/acs.orglett.1c04205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Belactosin A, a β-lactone proteasome inhibitor, contains a unique 3-(trans-2'-aminocyclopropyl)alanine moiety. We recently identified the biosynthetic gene cluster of the belactosin series from Streptomyces sp. UCK14. To shed light on the formation of the aminocyclopropylalanine, we established a heterologous pathway expression, constructed a set of gene deletion mutants, and performed feeding studies for a chemical complementation that include the incorporation of stable isotope-labeled precursors. We thereby show that, in the biosynthesis of this building block, a cryptic nitrocyclopropylalanine intermediate is generated from l-lysine. The subsequent reduction of the N-oxygenated precursor to the corresponding amine is mediated by the molybdopterin-dependent enzyme BelN.
Collapse
Affiliation(s)
- Alicia Engelbrecht
- Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Felix Wolf
- Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Annika Esch
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Sergei I Kozhushkov
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Armin de Meijere
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Chambers C Hughes
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
- Institute for Drug Discovery, Department of Pharmaceutical Biology, University of Leipzig, 04317 Leipzig, Germany
| |
Collapse
|
4
|
Cheng J, Liu WQ, Zhu X, Zhang Q. Functional Diversity of HemN-like Proteins. ACS BIO & MED CHEM AU 2022; 2:109-119. [PMID: 37101745 PMCID: PMC10114718 DOI: 10.1021/acsbiomedchemau.1c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wan-Qiu Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoyu Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Zhi N, Zhu H, Qiao J, Dong M. Recent progress in radical SAM enzymes: New reactions and mechanisms. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites. Nat Commun 2021; 12:6942. [PMID: 34836957 PMCID: PMC8626424 DOI: 10.1038/s41467-021-27284-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
Microbes produce a broad spectrum of antibiotic natural products, including many DNA-damaging genotoxins. Among the most potent of these are DNA alkylating agents in the spirocyclopropylcyclohexadienone (SCPCHD) family, which includes the duocarmycins, CC-1065, gilvusmycin, and yatakemycin. The yatakemycin biosynthesis cluster in Streptomyces sp. TP-A0356 contains an AlkD-related DNA glycosylase, YtkR2, that serves as a self-resistance mechanism against yatakemycin toxicity. We previously reported that AlkD, which is not present in an SCPCHD producer, provides only limited resistance against yatakemycin. We now show that YtkR2 and C10R5, a previously uncharacterized homolog found in the CC-1065 biosynthetic gene cluster of Streptomyces zelensis, confer far greater resistance against their respective SCPCHD natural products. We identify a structural basis for substrate specificity across gene clusters and show a correlation between in vivo resistance and in vitro enzymatic activity indicating that reduced product affinity-not enhanced substrate recognition-is the evolutionary outcome of selective pressure to provide self-resistance against yatakemycin and CC-1065.
Collapse
|
8
|
Alder A, Struck NS, Xu M, Johnson JW, Wang W, Pallant D, Cook MA, Rambow J, Lemcke S, Gilberger TW, Wright GD. A non-reactive natural product precursor of the duocarmycin family has potent and selective antimalarial activity. Cell Chem Biol 2021; 29:840-853.e6. [PMID: 34710358 DOI: 10.1016/j.chembiol.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 10/02/2021] [Indexed: 11/27/2022]
Abstract
We identify a selective nanomolar inhibitor of blood-stage malarial proliferation from a screen of microbial natural product extracts. The responsible compound, PDE-I2, is a precursor of the anticancer duocarmycin family that preserves the class's sequence-specific DNA binding but lacks its signature DNA alkylating cyclopropyl warhead. While less active than duocarmycin, PDE-I2 retains comparable antimalarial potency to chloroquine. Importantly, PDE-I2 is >1,000-fold less toxic to human cell lines than duocarmycin, with mitigated impacts on eukaryotic chromosome stability. PDE-I2 treatment induces severe defects in parasite nuclear segregation leading to impaired daughter cell formation during schizogony. Time-of-addition studies implicate parasite DNA metabolism as the target of PDE-I2, with defects observed in DNA replication and chromosome integrity. We find the effect of duocarmycin and PDE-I2 on parasites is phenotypically indistinguishable, indicating that the DNA binding specificity of duocarmycins is sufficient and the genotoxic cyclopropyl warhead is dispensable for the parasite-specific selectivity of this compound class.
Collapse
Affiliation(s)
- Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany
| | - Nicole S Struck
- Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Min Xu
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jarrod W Johnson
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Wenliang Wang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Daniel Pallant
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Michael A Cook
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Janis Rambow
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany
| | - Sarah Lemcke
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany.
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
9
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
10
|
Lodhi R, Prakash M, Samanta S. Diastereoselective desymmetrization reactions of prochiral para-quinamines with cyclopropenes generated in situ: access to fused hydroindol-5-one scaffolds. Org Biomol Chem 2021; 19:7129-7133. [PMID: 34369544 DOI: 10.1039/d1ob01322j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interesting desymmetric [3 + 2] annulation reactions between p-quinamines as prochiral N-donors and 2-aroyl-1-chlorocyclopropanecarboxylates facilitated by a base are reported. This successive double Michael reaction delivered a unique class of cyclopropane-fused hydoindol-5-one frameworks, each having four contiguous stereogenic centers, with three of them being fully substituted. Moreover, this method was found to provide acceptable chemical yields with promising diastereoselectivities (dr of up to ≤95 : 5) and to work with a variety of substrates. Importantly, a polycyclic tacrine analogue used to treat Alzheimer's disease was synthesized using our developed method.
Collapse
Affiliation(s)
- Rajni Lodhi
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, India.
| | | | | |
Collapse
|
11
|
Ortuzar N, Karu K, Presa D, Morais GR, Sheldrake HM, Shnyder SD, Barnieh FM, Loadman PM, Patterson LH, Pors K, Searcey M. Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compounds. Bioorg Med Chem 2021; 40:116167. [PMID: 33932713 DOI: 10.1016/j.bmc.2021.116167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.
Collapse
Affiliation(s)
- Natalia Ortuzar
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kersti Karu
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Daniela Presa
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Steve D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Francis M Barnieh
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
12
|
Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B 2021; 11:632-650. [PMID: 33777672 PMCID: PMC7982431 DOI: 10.1016/j.apsb.2020.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 02/08/2023] Open
Abstract
S-adenosylmethionine (SAM) is ubiquitous in living organisms and is of great significance in metabolism as a cofactor of various enzymes. Methyltransferases (MTases), a major group of SAM-dependent enzymes, catalyze methyl transfer from SAM to C, O, N, and S atoms in small-molecule secondary metabolites and macromolecules, including proteins and nucleic acids. MTases have long been a hot topic in biomedical research because of their crucial role in epigenetic regulation of macromolecules and biosynthesis of natural products with prolific pharmacological moieties. However, another group of SAM-dependent enzymes, sharing similar core domains with MTases, can catalyze nonmethylation reactions and have multiple functions. Herein, we mainly describe the nonmethylation reactions of SAM-dependent enzymes in biosynthesis. First, we compare the structural and mechanistic similarities and distinctions between SAM-dependent MTases and the non-methylating SAM-dependent enzymes. Second, we summarize the reactions catalyzed by these enzymes and explore the mechanisms. Finally, we discuss the structural conservation and catalytical diversity of class I-like non-methylating SAM-dependent enzymes and propose a possibility in enzymes evolution, suggesting future perspectives for enzyme-mediated chemistry and biotechnology, which will help the development of new methods for drug synthesis.
Collapse
|
13
|
Hosseini SJ, Emamian S, Hassani H, Hamzehzadeh ND. Stereoselective Cyclopropanation of
Arylmethylidenemalononitriles by 2,6-Dimethylquinoline: A Molecular Electron Density
Theory Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wilkens D, Meusinger R, Hein S, Simon J. Sequence analysis and specificity of distinct types of menaquinone methyltransferases indicate the widespread potential of methylmenaquinone production in bacteria and archaea. Environ Microbiol 2020; 23:1407-1421. [PMID: 33264482 DOI: 10.1111/1462-2920.15344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Menaquinone (MK) serves as an essential membranous redox mediator in various electron transport chains of aerobic and anaerobic respiration. In addition, the composition of the quinone/quinol pool has been widely used as a biomarker in microbial taxonomy. The HemN-like class C radical SAM methyltransferases (RSMTs) MqnK, MenK and MenK2 have recently been shown to facilitate specific menaquinone methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesize 8-methylmenaquinone, 7-methylmenaquinone and 7,8-dimethylmenaquinone. However, the vast majority of protein sequences from the MqnK/MenK/MenK2 family belong to organisms, whose capacity to produce methylated menaquinones has not been investigated biochemically. Here, representative putative menK and menK2 genes from Collinsella tanakaei and Ferrimonas marina were individually expressed in Escherichia coli (wild-type or ubiE deletion mutant) and the corresponding cells were found to produce methylated derivatives of the endogenous MK and 2-demethylmenaquinone. Cluster and phylogenetic analyses of 828 (methyl)menaquinone methyltransferase sequences revealed signature motifs that allowed to discriminate enzymes of the MqnK/MenK/MenK2 family from other radical SAM enzymes and to identify C-7-specific menaquinone methyltransferases of the MenK2 subfamily. This study will help to predict the methylation status of the quinone/quinol pool of a microbial species (or even a microbial community) from its (meta)genome and contribute to the future design of microbial quinone/quinol pools in a Synthetic Biology approach.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany
| | - Reinhard Meusinger
- Department of Chemistry, Macromolecular Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, Darmstadt, 64287, Germany
| | - Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, 64283, Germany
| |
Collapse
|
15
|
Chaki BM, Takenaka K, Zhu L, Tsujihara T, Takizawa S, Sasai H. Enantioselective One‐pot Synthesis of 3‐Azabicyclo[3.1.0]hexanes
via
Allylic Substitution and Oxidative Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bijan Mohon Chaki
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Kazuhiro Takenaka
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Linpeng Zhu
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Tetsuya Tsujihara
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| |
Collapse
|
16
|
Maini Rekdal V, Nol Bernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, Turnbaugh PJ, Bess EN, Balskus EP. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 2020; 9:e50845. [PMID: 32067637 PMCID: PMC7028382 DOI: 10.7554/elife.50845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Catechol dehydroxylation is a central chemical transformation in the gut microbial metabolism of plant- and host-derived small molecules. However, the molecular basis for this transformation and its distribution among gut microorganisms are poorly understood. Here, we characterize a molybdenum-dependent enzyme from the human gut bacterium Eggerthella lenta that dehydroxylates catecholamine neurotransmitters. Our findings suggest that this activity enables E. lenta to use dopamine as an electron acceptor. We also identify candidate dehydroxylases that metabolize additional host- and plant-derived catechols. These dehydroxylases belong to a distinct group of largely uncharacterized molybdenum-dependent enzymes that likely mediate primary and secondary metabolism in multiple environments. Finally, we observe catechol dehydroxylation in the gut microbiotas of diverse mammals, confirming the presence of this chemistry in habitats beyond the human gut. These results suggest that the chemical strategies that mediate metabolism and interactions in the human gut are relevant to a broad range of species and habitats.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Paola Nol Bernadino
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Michael U Luescher
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Sina Kiamehr
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Chip Le
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Jordan E Bisanz
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Peter J Turnbaugh
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Elizabeth N Bess
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Emily P Balskus
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
17
|
Jin WB, Wu S, Xu YF, Yuan H, Tang GL. Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat Prod Rep 2020; 37:17-28. [DOI: 10.1039/c9np00032a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HemN-like radical S-adenosyl-l-methionine (SAM) enzymes have been recently disclosed to catalyze diverse chemically challenging reactions from primary to secondary metabolic pathways.
Collapse
Affiliation(s)
- Wen-Bing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sheng Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yi-Fan Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Hua Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
18
|
Mullins EA, Rodriguez AA, Bradley NP, Eichman BF. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway. Trends Biochem Sci 2019; 44:765-781. [PMID: 31078398 DOI: 10.1016/j.tibs.2019.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The base excision repair (BER) pathway historically has been associated with maintaining genome integrity by eliminating nucleobases with small chemical modifications. In the past several years, however, BER was found to play additional roles in genome maintenance and metabolism, including sequence-specific restriction modification and repair of bulky adducts and interstrand crosslinks. Central to this expanded biological utility are specialized DNA glycosylases - enzymes that selectively excise damaged, modified, or mismatched nucleobases. In this review we discuss the newly identified roles of the BER pathway and examine the structural and mechanistic features of the DNA glycosylases that enable these functions.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alyssa A Rodriguez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Abstract
Cyclopropanes, one of the most important strained rings, have gained much attention for more than a century because of their interesting and unique reactivity. They not only exist in many natural products, but have also been widely used in the fields of organic synthesis, medicinal chemistry and materials science as versatile building blocks. Based on the sustainable development in this area, this review mainly focuses on the recent advances in the synthesis of cyclopropanes classified by the type of catalytic system, including regio-, diastereo-, and enantio-selective reactions.
Collapse
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | |
Collapse
|
20
|
A radical S-adenosyl-L-methionine enzyme and a methyltransferase catalyze cyclopropane formation in natural product biosynthesis. Nat Commun 2018; 9:2771. [PMID: 30018376 PMCID: PMC6050322 DOI: 10.1038/s41467-018-05217-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
Cyclopropanation of unactivated olefinic bonds via addition of a reactive one-carbon species is well developed in synthetic chemistry, whereas natural cyclopropane biosynthesis employing this strategy is very limited. Here, we identify a two-component cyclopropanase system, composed of a HemN-like radical S-adenosyl-L-methionine (SAM) enzyme C10P and a methyltransferase C10Q, catalyzes chemically challenging cyclopropanation in the antitumor antibiotic CC-1065 biosynthesis. C10P uses its [4Fe-4S] cluster for reductive cleavage of the first SAM to yield a highly reactive 5'-deoxyadenosyl radical, which abstracts a hydrogen from the second SAM to produce a SAM methylene radical that adds to an sp2-hybridized carbon of substrate to form a SAM-substrate adduct. C10Q converts this adduct to CC-1065 via an intramolecular SN2 cyclization mechanism with elimination of S-adenosylhomocysteine. This cyclopropanation strategy not only expands the enzymatic reactions catalyzed by the radical SAM enzymes and methyltransferases, but also sheds light on previously unnoticed aspects of the versatile SAM-based biochemistry.
Collapse
|
21
|
Wang X, Wu S, Jin W, Xu B, Tang G, Yuan H. Bioinformatics-guided connection of a biosynthetic gene cluster to the antitumor antibiotic gilvusmycin. Acta Biochim Biophys Sin (Shanghai) 2018; 50:516-518. [PMID: 29659660 DOI: 10.1093/abbs/gmy030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xu Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenbing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Gongli Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Abstract
Cyclopropanes have gained much attention by virtue of their interesting structure and unique reactivity. This review discusses the recent advances in the synthesis of cyclopropanes, and some of the related applications will be discussed.
Collapse
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
| | - Zhiming Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
23
|
Yuan H, Zhang J, Cai Y, Wu S, Yang K, Chan HCS, Huang W, Jin WB, Li Y, Yin Y, Igarashi Y, Yuan S, Zhou J, Tang GL. GyrI-like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection. Nat Commun 2017; 8:1485. [PMID: 29133784 PMCID: PMC5684135 DOI: 10.1038/s41467-017-01508-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/12/2017] [Indexed: 02/01/2023] Open
Abstract
GyrI-like proteins are widely distributed in prokaryotes and eukaryotes, and recognized as small-molecule binding proteins. Here, we identify a subfamily of these proteins as cyclopropanoid cyclopropyl hydrolases (CCHs) that can catalyze the hydrolysis of the potent DNA-alkylating agents yatakemycin (YTM) and CC-1065. Co-crystallography and molecular dynamics simulation analyses reveal that these CCHs share a conserved aromatic cage for the hydrolytic activity. Subsequent cytotoxic assays confirm that CCHs are able to protect cells against YTM. Therefore, our findings suggest that the evolutionarily conserved GyrI-like proteins confer cellular protection against diverse xenobiotics via not only binding, but also catalysis.
Collapse
Affiliation(s)
- Hua Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinru Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yujuan Cai
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Sheng Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Kui Yang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - H C Stephen Chan
- Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Wei Huang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen-Bing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue Yin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, CH-1015, Lausanne, Switzerland.
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|