1
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
2
|
Sarli A, Al Sudani ZM, Vaghefi F, Motallebi F, Khosravi T, Rezaie N, Oladnabi M. Second report of TEDC1-related microcephaly caused by a novel biallelic mutation in an Iranian consanguineous family. Mol Biol Rep 2024; 51:181. [PMID: 38252227 DOI: 10.1007/s11033-023-09136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Primary autosomal recessive microcephaly (MCPH) is a rare developmental disorder characterized by cognitive impairment, delayed neurodevelopment, and reduced brain size. It is a genetically heterogeneous condition, and several genes have been identified as associated with MCPH. METHODS AND RESULTS In this study, we utilized whole-exome sequencing (WES) to identify disease-causing variations in two brothers from an Iranian family affected by MCPH, who had consanguineous parents. In the patients, we detected a novel homozygous missense mutation (c.806A > G, p.Gln269Arg) in the TEDC1 gene in one of the patients. Co-segregation analysis using Sanger sequencing confirmed that this variant was inherited from parents. The identified variant was evaluated for its pathogenicity and novelty using various databases. Additionally, bioinformatics tools were employed to predict the three-dimensional structure of the mutant TEDC1 protein. CONCLUSIONS This study presents the second documented report of a mutation in the TEDC1 gene associated with MCPH. The identification of this novel biallelic mutation as a causative factor for MCPH in the proband further underscores the utility of genetic testing techniques, such as WES, as reliable diagnostic tools for individuals with this condition.
Collapse
Affiliation(s)
- Abdolazim Sarli
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Fatemeh Vaghefi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farzaneh Motallebi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Teymoor Khosravi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Rezaie
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
3
|
Prokofeva P, Höfer S, Hornisch M, Abele M, Kuster B, Médard G. Merits of Diazirine Photo-Immobilization for Target Profiling of Natural Products and Cofactors. ACS Chem Biol 2022; 17:3100-3109. [PMID: 36302507 PMCID: PMC9680877 DOI: 10.1021/acschembio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 01/20/2023]
Abstract
Finding the targets of natural products is of key importance in both chemical biology and drug discovery, and deconvolution of cofactor interactomes contributes to the functional annotation of the proteome. Identifying the proteins that underlie natural compound activity in phenotypic screens helps to validate the respective targets and, potentially, expand the druggable proteome. Here, we present a generally applicable protocol for the photoactivated immobilization of unmodified and microgram quantities of natural products on diazirine-decorated beads and their use for systematic affinity-based proteome profiling. We show that among 31 molecules of very diverse reported activity and biosynthetic origin, 25 could indeed be immobilized. Dose-response competition binding experiments using lysates of human or bacterial cells followed by quantitative mass spectrometry recapitulated targets of 9 molecules with <100 μM affinity. Among them, immobilization of coenzyme A produced a tool to interrogate proteins containing a HotDog domain. Surprisingly, immobilization of the cofactor flavin adenine dinucleotide (FAD) led to the identification of nanomolar interactions with dozens of RNA-binding proteins.
Collapse
Affiliation(s)
- Polina Prokofeva
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Höfer
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Maximilian Hornisch
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Miriam Abele
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Guillaume Médard
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
4
|
Yu Q, Zhang B, Zhang YM, Liu YH, Liu Y. Actin Cytoskeleton-Disrupting and Magnetic Field-Responsive Multivalent Supramolecular Assemblies for Efficient Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13709-13717. [PMID: 32118400 DOI: 10.1021/acsami.0c01762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actin cytoskeleton disruption is a promising and intriguing anticancer strategy, but their efficiency is frequently compromised by severe side effects of the actin cytoskeleton-disrupting agents. In this study, we constructed the biocompatible actin cytoskeleton-targeting multivalent supramolecular assemblies that specifically target and disrupt the tumor actin cytoskeleton for cancer therapy. The assemblies were composed of β-cyclodextrin-grafted hyaluronic acid (HACD) and iron oxide magnetic nanoparticles (MNPs) grafted by an actin-binding peptide (ABP) and adamantane (Ada)-modified polylysine. Owing to the multivalent binding between cyclodextrin and Ada, HACD, and peptide-grafted MNPs (MNP-ABP-Ada) could self-assemble to form MNP-ABP-Ada⊂HACD nanofibers in a geomagnetism-dependent manner. Furthermore, the presence of ABP rendered the assemblies to efficiently target the actin cytoskeleton. Interestingly, with the acid of a low-frequency alternating magnetic field (200 Hz), the actin cytoskeleton-targeting nanofibers could induce severe actin disruption, leading to a remarkable cell cycle arrest and drastic cell death of tumor cells both in vitro and in vivo, but showed no obvious toxicity to normal cells. The actin cytoskeleton-targeting/disrupting supramolecular assembly implies an excellent strategy for realizing efficient cancer therapy.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Wang S, Gegenfurtner FA, Crevenna AH, Ziegenhain C, Kliesmete Z, Enard W, Müller R, Vollmar AM, Schneider S, Zahler S. Chivosazole A Modulates Protein-Protein Interactions of Actin. JOURNAL OF NATURAL PRODUCTS 2019; 82:1961-1970. [PMID: 31260301 DOI: 10.1021/acs.jnatprod.9b00335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Actin is a protein of central importance for many cellular key processes. It is regulated by local interactions with a large number of actin binding proteins (ABPs). Various compounds are known to either increase or decrease the polymerization dynamics of actin. However, no actin binding compound has been developed for clinical applications yet because of selectivity issues. We provide a crystal structure of the natural product chivosazole A (ChivoA) bound to actin and show that-in addition to inhibiting nucleation, polymerization, and severing of F-actin filaments-it selectively modulates binding of ABPs to G-actin: Although unphysiological actin dimers are induced by ChivoA, interaction with gelsolin, profilin, cofilin, and thymosin-β4 is inhibited. Moreover, ChivoA causes transcriptional effects differing from latrunculin B, an actin binder with a different binding site. Our data show that ChivoA and related compounds could serve as scaffolds for the development of actin binding molecules selectively targeting specific actin functions.
Collapse
Affiliation(s)
- Shuaijun Wang
- Department of Pharmacy , Ludwig-Maximilians-University , 81377 Munich , Germany
| | | | - Alvaro H Crevenna
- Biomolecular Self-Organization Laboratory , ITQB-Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Christoph Ziegenhain
- Department of Biology II , Ludwig-Maximilians-University , 82152 Planegg-Martinsried , Germany
| | - Zane Kliesmete
- Department of Biology II , Ludwig-Maximilians-University , 82152 Planegg-Martinsried , Germany
| | - Wolfgang Enard
- Department of Biology II , Ludwig-Maximilians-University , 82152 Planegg-Martinsried , Germany
| | - Rolf Müller
- Department of Pharmacy , Saarland University , 66125 Saarbrücken , Germany
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland and Helmholtz Centre for Infection Research , 66123 Saarbrücken , Germany
| | - Angelika M Vollmar
- Department of Pharmacy , Ludwig-Maximilians-University , 81377 Munich , Germany
| | - Sabine Schneider
- Department of Chemistry , Technical University Munich , 85748 Garching , Germany
| | - Stefan Zahler
- Department of Pharmacy , Ludwig-Maximilians-University , 81377 Munich , Germany
| |
Collapse
|
6
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|