1
|
Khan TA, Stoldt S, Bossi ML, Belov VN, Hell SW. β-Galactosidase- and Photo-Activatable Fluorescent Probes for Protein Labeling and Super-Resolution STED Microscopy in Living Cells. Molecules 2024; 29:3596. [PMID: 39125001 PMCID: PMC11314211 DOI: 10.3390/molecules29153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin-Halo fusion protein in live cells with overexpressed β-galactosidase. The dye fluorescence afforded the observation of enzyme activity by means of confocal and super-resolution optical microscopy based on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of activated fluorescent products inside cells was combined with super-resolution imaging as a tool for use in biomedicine and life science.
Collapse
Affiliation(s)
- Taukeer A. Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Mariano L. Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120 Heidelberg, Germany;
| | - Vladimir N. Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120 Heidelberg, Germany;
| |
Collapse
|
2
|
Knorr G, Bossi ML, Butkevich AN, Hell SW. Synthesis of Thioxanthone 10,10-Dioxides and Sulfone-Fluoresceins via Pd-Catalyzed Sulfonylative Homocoupling. Org Lett 2024; 26:945-949. [PMID: 38236781 PMCID: PMC10845149 DOI: 10.1021/acs.orglett.3c04300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Our report describes the facile and scalable preparation of 9H-thioxanthen-9-one 10,10-dioxides via Pd-catalyzed sulfonylative homocoupling of the appropriately substituted benzophenones. This transformation provides a straightforward route to previously unreported sulfone-fluoresceins and -fluorones. Several examples of these red fluorescent dyes have been prepared, characterized, and evaluated as live-cell permeant labels compatible with super-resolution fluorescence microscopy with 775 nm stimulated emission depletion.
Collapse
Affiliation(s)
- Gergely Knorr
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Grimm J, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD. Optimized Red-Absorbing Dyes for Imaging and Sensing. J Am Chem Soc 2023; 145:23000-23013. [PMID: 37842926 PMCID: PMC10603817 DOI: 10.1021/jacs.3c05273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 10/17/2023]
Abstract
Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.
Collapse
Affiliation(s)
- Jonathan
B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - S. Thomas Hennigan
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Alina Gutu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Anastasia M. Osowski
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Katie L. Holland
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Zhe J. Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
4
|
Aktalay A, Khan TA, Bossi ML, Belov VN, Hell SW. Photoactivatable Carbo- and Silicon-Rhodamines and Their Application in MINFLUX Nanoscopy. Angew Chem Int Ed Engl 2023; 62:e202302781. [PMID: 37555720 DOI: 10.1002/anie.202302781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
New photoactivatable fluorescent dyes (rhodamine, carbo- and silicon-rhodamines [SiR]) with emission ranging from green to far red have been prepared, and their photophysical properties studied. The photocleavable 2-nitrobenzyloxycarbonyl unit with an alpha-carboxyl group as a branching point and additional functionality was attached to a polycyclic and lipophilic fluorescent dye. The photoactivatable probes having the HaloTagTM amine (O2) ligand bound with a dye core were obtained and applied for live-cell staining in stable cell lines incorporating Vimentin (VIM) or Nuclear Pore Complex Protein NUP96 fused with the HaloTag. The probes were applied in 2D (VIM, NUP96) and 3D (VIM) MINFLUX nanoscopy, as well as in superresolution fluorescence microscopy with single fluorophore activation (VIM, live-cell labeling). Images of VIM and NUPs labeled with different dyes were acquired and their apparent dimensions and shapes assessed on a lower single-digit nanometer scale. Applicability and performance of the photoactivatable dye derivatives were evaluated in terms of photoactivation rate, labeling and detection efficiency, number of detected photons per molecule and other parameters related to MINFLUX nanoscopy.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Huang S, Dai R, Zhang Z, Zhang H, Zhang M, Li Z, Zhao K, Xiong W, Cheng S, Wang B, Wan Y. CRISPR/Cas-Based Techniques for Live-Cell Imaging and Bioanalysis. Int J Mol Sci 2023; 24:13447. [PMID: 37686249 PMCID: PMC10487896 DOI: 10.3390/ijms241713447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
CRISPR/Cas systems have found widespread applications in gene editing due to their high accuracy, high programmability, ease of use, and affordability. Benefiting from the cleavage properties (trans- or cis-) of Cas enzymes, the scope of CRISPR/Cas systems has expanded beyond gene editing and they have been utilized in various fields, particularly in live-cell imaging and bioanalysis. In this review, we summarize some fundamental working mechanisms and concepts of the CRISPR/Cas systems, describe the recent advances and design principles of CRISPR/Cas mediated techniques employed in live-cell imaging and bioanalysis, highlight the main applications in the imaging and biosensing of a wide range of molecular targets, and discuss the challenges and prospects of CRISPR/Cas systems in live-cell imaging and biosensing. By illustrating the imaging and bio-sensing processes, we hope this review will guide the best use of the CRISPR/Cas in imaging and quantifying biological and clinical elements and inspire new ideas for better tool design in live-cell imaging and bioanalysis.
Collapse
Affiliation(s)
- Shuo Huang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Rui Dai
- Institute of Oceanography, Hainan University, Haikou 570228, China;
| | - Zhiqi Zhang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Han Zhang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Meng Zhang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Zhangjun Li
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Kangrui Zhao
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Wenjun Xiong
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Siyu Cheng
- College of Art and Design, Hainan University, Haikou 570228, China;
| | - Buhua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Aktalay A, Lincoln R, Heynck L, Lima MADBF, Butkevich AN, Bossi ML, Hell SW. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS CENTRAL SCIENCE 2023; 9:1581-1590. [PMID: 37637742 PMCID: PMC10450876 DOI: 10.1021/acscentsci.3c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lukas Heynck
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
7
|
A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy. Nat Commun 2023; 14:1306. [PMID: 36894547 PMCID: PMC9998615 DOI: 10.1038/s41467-023-36913-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The development of live-cell fluorescence nanoscopy is powered by the availability of suitable fluorescent probes. Rhodamines are among the best fluorophores for labeling intracellular structures. Isomeric tuning is a powerful method for optimizing the biocompatibility of rhodamine-containing probes without affecting their spectral properties. An efficient synthesis pathway for 4-carboxyrhodamines is still lacking. We present a facile protecting-group-free 4-carboxyrhodamines' synthesis based on the nucleophilic addition of lithium dicarboxybenzenide to the corresponding xanthone. This approach drastically reduces the number of synthesis steps, expands the achievable structural diversity, increases overall yields and permits gram-scale synthesis of the dyes. We synthesize a wide range of symmetrical and unsymmetrical 4-carboxyrhodamines covering the whole visible spectrum and target them to multiple structures in living cells - microtubules, DNA, actin, mitochondria, lysosomes, Halo-tagged and SNAP-tagged proteins. The enhanced permeability fluorescent probes operate at submicromolar concentrations, allowing high-contrast STED and confocal microscopy of living cells and tissues.
Collapse
|
8
|
Likhotkin I, Lincoln R, Bossi ML, Butkevich AN, Hell SW. Photoactivatable Large Stokes Shift Fluorophores for Multicolor Nanoscopy. J Am Chem Soc 2023; 145:1530-1534. [PMID: 36626161 PMCID: PMC9880998 DOI: 10.1021/jacs.2c12567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We designed caging-group-free photoactivatable live-cell permeant dyes with red fluorescence emission and ∼100 nm Stokes shifts based on a 1-vinyl-10-silaxanthone imine core structure. The proposed fluorophores undergo byproduct-free one- and two-photon activation, are suitable for multicolor fluorescence microscopy in fixed and living cells, and are compatible with super-resolution techniques such as STED (stimulated emission depletion) and PALM (photoactivated localization microscopy). Use of photoactivatable labels for strain-promoted tetrazine ligation and self-labeling protein tags (HaloTag, SNAP-tag), and duplexing of an imaging channel with another large Stokes shift dye have been demonstrated.
Collapse
Affiliation(s)
- Ilya Likhotkin
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany,Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany,
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany,Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany,
| |
Collapse
|
9
|
Zhou X, Fang Y, Wimalasiri V, Stains CI, Miller EW. A long-wavelength xanthene dye for photoacoustic imaging. Chem Commun (Camb) 2022; 58:11941-11944. [PMID: 36196957 PMCID: PMC9634815 DOI: 10.1039/d2cc03947h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Photoacoustic (PA) imaging is a powerful biomedical imaging modality. We designed KeTMR and KeJuR, two xanthene-based dyes that were readily obtained through a 2-step synthetic route. KeJuR has low molecular weight, good aqueous solubility, and superior chemical stability compared to KeTMR. KeJuR shows a robust PA signal under 860 nm excitation and can be paired with traditional PA dyes for multiplex imaging in blood samples under a tissue-mimicking environment.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Viranga Wimalasiri
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virgnia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Lincoln R, Bossi ML, Remmel M, D'Este E, Butkevich AN, Hell SW. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy. Nat Chem 2022; 14:1013-1020. [PMID: 35864152 PMCID: PMC9417988 DOI: 10.1038/s41557-022-00995-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The controlled switching of fluorophores between non-fluorescent and fluorescent states is central to every super-resolution fluorescence microscopy (nanoscopy) technique, and the exploration of radically new switching mechanisms remains critical to boosting the performance of established, as well as emerging super-resolution methods. Photoactivatable dyes offer substantial improvements to many of these techniques, but often rely on photolabile protecting groups that limit their applications. Here we describe a general method to transform 3,6-diaminoxanthones into caging-group-free photoactivatable fluorophores. These photoactivatable xanthones (PaX) assemble rapidly and cleanly into highly fluorescent, photo- and chemically stable pyronine dyes upon irradiation with light. The strategy is extendable to carbon- and silicon-bridged xanthone analogues, yielding a family of photoactivatable labels spanning much of the visible spectrum. Our results demonstrate the versatility and utility of PaX dyes in fixed and live-cell labelling for conventional microscopy, as well as the coordinate-stochastic and deterministic nanoscopies STED, PALM and MINFLUX. ![]()
The design of photoactivatable fluorophores—which are required for some super-resolution fluorescence microscopy methods—usually relies on light-sensitive protecting groups imparting lipophilicity and generating reactive by-products. Now, it has been shown that by exploiting a unique intramolecular photocyclization, bright and highly photostable fluorophores can be rapidly generated in situ from appropriately substituted 1-alkenyl-3,6-diaminoxanthone precursors.
Collapse
Affiliation(s)
- Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany. .,Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
11
|
A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nat Commun 2022; 13:2264. [PMID: 35477933 PMCID: PMC9046415 DOI: 10.1038/s41467-022-29547-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
The quality and application of super-resolution fluorescence imaging greatly lie in the dyes’ properties, including photostability, brightness, and Stokes shift. Here we report a synergistic strategy to simultaneously improve such properties of regular fluorophores. Introduction of quinoxaline motif with fine-tuned electron density to conventional rhodamines generates new dyes with vibration structure and inhibited twisted-intramolecular-charge-transfer (TICT) formation synchronously, thus increasing the brightness and photostability while enlarging Stokes shift. The new fluorophore YL578 exhibits around twofold greater brightness and Stokes shift than its parental fluorophore, Rhodamine B. Importantly, in Stimulated Emission Depletion (STED) microscopy, YL578 derived probe possesses a superior photostability and thus renders threefold more frames than carbopyronine based probes (CPY-Halo and 580CP-Halo), known as photostable fluorophores for STED imaging. Furthermore, the strategy is well generalized to offer a new class of bright and photostable fluorescent probes with long Stokes shift (up to 136 nm) for bioimaging and biosensing. Super-resolution microscopy is a powerful tool for cellular studies but requires bright and stable fluorescent probes. Here, the authors report on a strategy to introduce quinoxaline motifs to conventional probes to make them brighter, more photostable, larger Stokes shift, and demonstrate the probes for biosensing applications.
Collapse
|
12
|
Heynck L, Matthias J, Bossi ML, Butkevich AN, Hell SW. N-Cyanorhodamines: cell-permeant, photostable and bathochromically shifted analogues of fluoresceins. Chem Sci 2022; 13:8297-8306. [PMID: 35919709 PMCID: PMC9297387 DOI: 10.1039/d2sc02448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Fluorescein and its analogues have found only limited use in biological imaging because of the poor photostability and cell membrane impermeability of their O-unprotected forms. Herein, we report rationally designed N-cyanorhodamines as orange- to red-emitting, photostable and cell-permeant fluorescent labels negatively charged at physiological pH values and thus devoid of off-targeting artifacts often observed for cationic fluorophores. In combination with well-established fluorescent labels, self-labelling protein (HaloTag, SNAP-tag) ligands derived from N-cyanorhodamines permit up to four-colour confocal and super-resolution STED imaging in living cells. N-Cyanorhodamines – photostable, cell-permeant analogues of fluoresceins – provide fast labelling kinetics with the HaloTag protein and background-free images in multicolour super-resolution microscopy.![]()
Collapse
Affiliation(s)
- Lukas Heynck
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Alexey N. Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Wang N, Hao Y, Feng X, Zhu H, Zhang D, Wang T, Cui X. Silicon-substituted rhodamines for stimulated emission depletion fluorescence nanoscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Qiao H, Wu J, Zhang X, Luo J, Wang H, Ming D. The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System. Front Chem 2021; 9:786354. [PMID: 34976954 PMCID: PMC8716450 DOI: 10.3389/fchem.2021.786354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The study of different genes, chromosomes and the spatiotemporal relationship between them is of great significance in the field of biomedicine. CRISPR-Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. In recent years, a series of advanced imaging technologies based on Cas9 have been reported, providing fast and convenient tools for studying the sites location of genome, RNA, and chromatin. At the same time, a variety of CRISPR-Cas9-based imaging systems have been developed, which are widely used in real-time multi-site imaging in vivo. In this review, we summarized the component and mechanism of CRISPR-Cas9 system, overviewed the NIR imaging and the application of NIR fluorophores in the delivery of CRISPR-Cas9, and highlighted advances of the CRISPR-Cas9-based imaging system. In addition, we also discussed the challenges and potential solutions of CRISPR-Cas9-based imaging methods, and looked forward to the development trend of the field.
Collapse
Affiliation(s)
- Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jieting Wu
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaodong Zhang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Hao Wang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Hao Wang, ; Dong Ming,
| | - Dong Ming
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Hao Wang, ; Dong Ming,
| |
Collapse
|
15
|
Gerasimaitė R, Bucevičius J, Kiszka KA, Schnorrenberg S, Kostiuk G, Koenen T, Lukinavičius G. Blinking Fluorescent Probes for Tubulin Nanoscopy in Living and Fixed Cells. ACS Chem Biol 2021; 16:2130-2136. [PMID: 34734690 PMCID: PMC8609524 DOI: 10.1021/acschembio.1c00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Here we report a
small molecule tubulin probe for single-molecule
localization microscopy (SMLM), stimulated emission depletion (STED)
microscopy and MINFLUX nanoscopy, which can be used in living and
fixed cells. We explored a series of taxane derivatives containing
spontaneously blinking far-red dye hydroxymethyl silicon–rhodamine
(HMSiR) and found that the linker length profoundly affects the probe
permeability and off-targeting in living cells. The best performing
probe, HMSiR-tubulin, is composed of cabazitaxel and the 6′-regioisomer
of HMSiR bridged by a C6 linker. Microtubule diameter of ≤50
nm was routinely measured in SMLM experiments on living and fixed
cells. HMSiR-tubulin allows a complementary use of different nanoscopy
techniques for investigating microtubule functions and developing
imaging methods. For the first time, we resolved the inner microtubule
diameter of 16 ± 5 nm by optical nanoscopy and thereby demonstrated
the utility of a self-blinking dye for MINFLUX imaging.
Collapse
Affiliation(s)
- Ru̅ta Gerasimaitė
- Chromatin Labeling and Imaging group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kamila A. Kiszka
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Georgij Kostiuk
- Chromatin Labeling and Imaging group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Tanja Koenen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Butkevich AN, Weber M, Cereceda Delgado AR, Ostersehlt LM, D'Este E, Hell SW. Photoactivatable Fluorescent Dyes with Hydrophilic Caging Groups and Their Use in Multicolor Nanoscopy. J Am Chem Soc 2021; 143:18388-18393. [PMID: 34714070 PMCID: PMC8587603 DOI: 10.1021/jacs.1c09999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We propose a series of fluorescent dyes with hydrophilic carbamate caging groups that undergo rapid photoactivation under UV (≤400 nm) irradiation but do not undergo spurious two-photon activation with high-intensity (visible or infrared) light of about twice the wavelength. The caged fluorescent dyes and labels derived therefrom display high water solubility and convert upon photoactivation into validated super-resolution and live-cell-compatible fluorophores. In combination with popular fluorescent markers, multiple (up to six)-color images can be obtained with stimulated emission depletion nanoscopy. Moreover, individual fluorophores can be localized with precision <3 nm (standard deviation) using MINSTED and MINFLUX techniques.
Collapse
Affiliation(s)
- Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Angel R Cereceda Delgado
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.,Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lynn M Ostersehlt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.,Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Zhang H, Zhao M, Ábrahám IM, Zhang F. Super-Resolution Imaging With Lanthanide Luminescent Nanocrystals: Progress and Prospect. Front Bioeng Biotechnol 2021; 9:692075. [PMID: 34660546 PMCID: PMC8514657 DOI: 10.3389/fbioe.2021.692075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Stimulated emission depletion (STED) nanoscopy has overcome a serious diffraction barrier on the optical resolution and facilitated new discoveries on detailed nanostructures in cell biology. Traditional fluorescence probes employed in the super-resolution imaging approach include organic dyes and fluorescent proteins. However, some limitations of these probes, such as photobleaching, short emission wavelengths, and high saturation intensity, still hamper the promotion of optical resolution and bio-applications. Recently, lanthanide luminescent probes with unique optical properties of non-photobleaching and sharp emissions have been applied in super-resolution imaging. In this mini-review, we will introduce several different mechanisms for lanthanide ions to achieve super-resolution imaging based on an STED-like setup. Then, several lanthanide ions used in super-resolution imaging will be described in detail and discussed. Last but not least, we will emphasize the future challenges and outlooks in hope of advancing the next-generation lanthanide fluorescent probes for super-resolution optical imaging.
Collapse
Affiliation(s)
- Hongxin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| | - Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| | - István M Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lardon N, Wang L, Tschanz A, Hoess P, Tran M, D'Este E, Ries J, Johnsson K. Systematic Tuning of Rhodamine Spirocyclization for Super-resolution Microscopy. J Am Chem Soc 2021; 143:14592-14600. [PMID: 34460256 DOI: 10.1021/jacs.1c05004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, and an adjustment of the equilibrium poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows one to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell-stimulated emission depletion (STED) microscopy or a spontaneously blinking dye for single-molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.
Collapse
Affiliation(s)
- Nicolas Lardon
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.,Faculty of Chemistry and Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Lu Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.,Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203 Shanghai, China
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, 69120 Heidelberg, Germany
| | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, 69120 Heidelberg, Germany
| | - Mai Tran
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.,Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Tyson J, Hu K, Zheng S, Kidd P, Dadina N, Chu L, Toomre D, Bewersdorf J, Schepartz A. Extremely Bright, Near-IR Emitting Spontaneously Blinking Fluorophores Enable Ratiometric Multicolor Nanoscopy in Live Cells. ACS CENTRAL SCIENCE 2021; 7:1419-1426. [PMID: 34471685 PMCID: PMC8393207 DOI: 10.1021/acscentsci.1c00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 05/16/2023]
Abstract
New bright, photostable, emission-orthogonal fluorophores that blink without toxic additives are needed to enable multicolor, live-cell, single-molecule localization microscopy (SMLM). Here we report the design, synthesis, and biological evaluation of Yale676sb, a photostable, near-IR-emitting fluorophore that achieves these goals in the context of an exceptional quantum yield (0.59). When used alongside HMSiR, Yale676sb enables simultaneous, live-cell, two-color SMLM of two intracellular organelles (ER + mitochondria) with only a single laser and no chemical additives.
Collapse
Affiliation(s)
- Jonathan Tyson
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kevin Hu
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Department
of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Shuai Zheng
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Phylicia Kidd
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Neville Dadina
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ling Chu
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Derek Toomre
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Nanobiology
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joerg Bewersdorf
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Department
of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Kavli
Institute for Neuroscience, Yale School
of Medicine, New Haven, Connecticut 06510, United States
- Nanobiology
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Siegmund R, Werner F, Jakobs S, Geisler C, Egner A. isoSTED microscopy with water-immersion lenses and background reduction. Biophys J 2021; 120:3303-3314. [PMID: 34246627 PMCID: PMC8392127 DOI: 10.1016/j.bpj.2021.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023] Open
Abstract
Fluorescence microscopy is an excellent tool to gain knowledge on cellular structures and biochemical processes. Stimulated emission depletion (STED) microscopy provides a resolution in the range of a few 10 nm at relatively fast data acquisition. As cellular structures can be oriented in any direction, it is of great benefit if the microscope exhibits an isotropic resolution. Here, we present an isoSTED microscope that utilizes water-immersion objective lenses and enables imaging of cellular structures with an isotropic resolution of better than 60 nm in living samples at room temperature and without CO2 supply or another pH control. This corresponds to a reduction of the focal volume by far more than two orders of magnitude as compared to confocal microscopy. The imaging speed is in the range of 0.8 s/μm3. Because fluorescence signal can only be detected from a diffraction-limited volume, a background signal is inevitably observed at resolutions well beyond the diffraction limit. Therefore, we additionally present a method that allows us to identify this unspecific background signal and to remove it from the image.
Collapse
Affiliation(s)
- René Siegmund
- Department of Optical Nanoscopy, Institute for Nanophotonics Göttingen, Göttingen, Germany
| | - Frank Werner
- Institute of Mathematics, University of Würzburg, Würzburg, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Geisler
- Department of Optical Nanoscopy, Institute for Nanophotonics Göttingen, Göttingen, Germany
| | - Alexander Egner
- Department of Optical Nanoscopy, Institute for Nanophotonics Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
Grimm F, Rehman J, Stoldt S, Khan TA, Schlötel JG, Nizamov S, John M, Belov VN, Hell SW. Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy*. Chemistry 2021; 27:6070-6076. [PMID: 33496998 PMCID: PMC8048976 DOI: 10.1002/chem.202005134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Formylation of 2,6-dichloro-5-R-nicotinic acids at C-4 followed by condensation with 3-hydroxy-N,N-dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6-dichloro-5-R-nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with "small molecules" provided specific labeling (covalent and non-covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two-color STED microscopy with a 775 nm STED laser.
Collapse
Affiliation(s)
- Florian Grimm
- Abberior GmbHHans Adolf Krebs Weg 137077GöttingenGermany
| | - Jasmin Rehman
- Abberior GmbHHans Adolf Krebs Weg 137077GöttingenGermany
| | - Stefan Stoldt
- Department of NanobiophotonicsMax Planck Institute for Biophysical Chemistry (MPIBPC)Am Fassberg 1137077GöttingenGermany
| | - Taukeer A. Khan
- Department of NanobiophotonicsMax Planck Institute for Biophysical Chemistry (MPIBPC)Am Fassberg 1137077GöttingenGermany
| | - Jan Gero Schlötel
- Abberior-Instruments GmbHHans Adolf Krebs Weg 137077GöttingenGermany
| | - Shamil Nizamov
- Abberior GmbHHans Adolf Krebs Weg 137077GöttingenGermany
| | - Michael John
- Institute of Organic and Biomolecular ChemistryGeorg-August UniversityTammannstr. 237077GöttingenGermany
| | - Vladimir N. Belov
- Department of NanobiophotonicsMax Planck Institute for Biophysical Chemistry (MPIBPC)Am Fassberg 1137077GöttingenGermany
| | - Stefan W. Hell
- Department of NanobiophotonicsMax Planck Institute for Biophysical Chemistry (MPIBPC)Am Fassberg 1137077GöttingenGermany
| |
Collapse
|
22
|
Predicting the membrane permeability of organic fluorescent probes by the deep neural network based lipophilicity descriptor DeepFl-LogP. Sci Rep 2021; 11:6991. [PMID: 33772099 PMCID: PMC7997998 DOI: 10.1038/s41598-021-86460-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/16/2021] [Indexed: 01/17/2023] Open
Abstract
Light microscopy has become an indispensable tool for the life sciences, as it enables the rapid acquisition of three-dimensional images from the interior of living cells/tissues. Over the last decades, super-resolution light microscopy techniques have been developed, which allow a resolution up to an order of magnitude higher than that of conventional light microscopy. Those techniques require labelling of cellular structures with fluorescent probes exhibiting specific properties, which are supplied from outside and therefore have to surpass cell membranes. Currently, major efforts are undertaken to develop probes which can surpass cell membranes and exhibit the photophysical properties required for super-resolution imaging. However, the process of probe development is still based on a tedious and time consuming manual screening. An accurate computer based model that enables the prediction of the cell permeability based on their chemical structure would therefore be an invaluable asset for the development of fluorescent probes. Unfortunately, current models, which are based on multiple molecular descriptors, are not well suited for this task as they require high effort in the usage and exhibit moderate accuracy in their prediction. Here, we present a novel fragment based lipophilicity descriptor DeepFL-LogP, which was developed on the basis of a deep neural network. DeepFL-LogP exhibits excellent correlation with the experimental partition coefficient reference data (R2 = 0.892 and MSE = 0.359) of drug-like substances. Further a simple threshold permeability model on the basis of this descriptor allows to categorize the permeability of fluorescent probes with 96% accuracy. This novel descriptor is expected to largely simplify and speed up the development process for novel cell permeable fluorophores.
Collapse
|
23
|
Török G, Cserép GB, Telek A, Arany D, Váradi M, Homolya L, Kellermayer M, Kele P, Németh K. Large Stokes-shift bioorthogonal probes for STED, 2P-STED and multi-color STED nanoscopy. Methods Appl Fluoresc 2021; 9:015006. [PMID: 33427202 DOI: 10.1088/2050-6120/abb363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthesis and multiple STED imaging applications of four, red-emitting (610-670 nm), tetrazine-functionalized fluorescent probes (CBRD = Chemical Biology Research group Dye 1-4) with large Stokes-shift is presented. Present studies revealed the super-resolution microscopy applicability of the probes as demonstrated through bioorthogonal labeling scheme of cytoskeletal proteins actin and keratin-19, and mitochondrial protein TOMM20. Furthermore, super-resolved images of insulin receptors in live-cell bioorthogonal labeling schemes through a genetically encoded cyclooctynylated non-canonical amino acid are also presented. The large Stokes-shifts and the wide spectral bands of the probes enabled the use of two common depletion lasers (660 nm and 775 nm). The probes were also found suitable for super-resolution microscopy in combination with two-photon excitation (2P-STED) resulting in improved spatial resolution. One of the dyes was also used together with two commercial dyes in the three-color STED imaging of intracellular structures.
Collapse
Affiliation(s)
- György Török
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47., H-1094 Budapest, Hungary. Laboratory of Molecular Cell Biology, Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inaba H, Matsuura K. Live-Cell Fluorescence Imaging of Microtubules by Using a Tau-Derived Peptide. Methods Mol Biol 2021; 2274:169-179. [PMID: 34050471 DOI: 10.1007/978-1-0716-1258-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microtubules (MTs) are important targets for imaging in living cells because of their vital roles in cellular processes. The dynamics (polymerization/depolymerization) of MTs has been imaged in living cells by utilizing MT-targeted drugs as scaffolds. We previously developed a unique MT-binding motif derived from a MT-associated protein, Tau. The Tau-derived peptide (TP) binds to the inner surface of MTs without inhibiting the dynamics of MTs. We introduce a new protocol for live-cell imaging of MTs by using fluorescently labeled TP. We exemplify that tetramethylrhodamine (TMR)-labeled TP (TP-TMR) is spontaneously internalized into HepG2 cells and binds to intracellular MTs, enabling visualization of MTs in living cells. TP-TMR shows no apparent effects on polymerization/depolymerization of MTs and no cytotoxicity. Thus, the peptide-based approach is useful for long-term imaging of MTs.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| |
Collapse
|
25
|
Xiao Y, Qian X. Substitution of oxygen with silicon: A big step forward for fluorescent dyes in life science. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213513] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Near-infrared fluorescent probes: a next-generation tool for protein-labeling applications. Chem Sci 2020; 12:3437-3447. [PMID: 34163617 PMCID: PMC8179524 DOI: 10.1039/d0sc04792a] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
The development of near-infrared (NIR) fluorescent probes over the past few decades has changed the way that biomolecules are imaged, and thus represents one of the most rapidly progressing areas of research. Presently, NIR fluorescent probes are routinely used to visualize and understand intracellular activities. The ability to penetrate tissues deeply, reduced photodamage to living organisms, and a high signal-to-noise ratio characterize NIR fluorescent probes as efficient next-generation tools for elucidating various biological events. The coupling of self-labeling protein tags with synthetic fluorescent probes is one of the most promising research areas in chemical biology. Indeed, at present, protein-labeling techniques are not only used to monitor the dynamics and localization of proteins but also play a more diverse role in imaging applications. For instance, one of the dominant technologies employed in the visualization of protein activity and regulation is based on protein tags and their associated NIR fluorescent probes. In this mini-review, we will discuss the development of several NIR fluorescent probes used for various protein-tag systems.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yuichiro Hori
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Osaka 565-0871 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Osaka 565-0871 Japan
- Quantum Information and Quantum Biology Division, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
27
|
Deng F, Qiao Q, Li J, Yin W, Miao L, Liu X, Xu Z. Multiple Factors Regulate the Spirocyclization Equilibrium of Si-Rhodamines. J Phys Chem B 2020; 124:7467-7474. [PMID: 32790386 DOI: 10.1021/acs.jpcb.0c05642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Si-rhodamine has been extensively used in super-resolution fluorescence imaging in recent years. Its equilibrium between ring-closed nonfluorescent spirolactones and ring-opened fluorescent zwitterions endows Si-rhodamine with excellent fluorogenicity, membrane permeability, and photostability. In this paper, the equilibrium of Si-rhodamine between lactones and zwitterions was revealed to be greatly affected by various environmental factors, including molecular aggregation, solvent polarity, pH, metal ions, irradiation, and temperature. These environmental sensitivities make Si-rhodamine useful as a hydrochromic material, a fluorescent sensor array for metal ions or solvents, and a photoactivatable switch. Importantly, these results indicate that using Si-rhodamine as a fluorogenic probe or a blinking fluorophore in single-molecule localization super-resolution microscopy requires caution on possible false signals caused by its environmental sensitivity.
Collapse
Affiliation(s)
- Fei Deng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenting Yin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
28
|
Li M, Wang C, Wang T, Fan M, Wang N, Ma D, Hu T, Cui X. Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo. Chem Commun (Camb) 2020; 56:2455-2458. [PMID: 31996872 DOI: 10.1039/c9cc09666c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A group of asymmetric Si-rhodamine scaffolds was designed for protease-activated NIR probes. Dual pH-inertia for both spirocyclized fluorescent probes and fluorescent products of zwitterions form over a wide range of pH (4.0-11.0). Leucine aminopeptidase (LAP) and γ-glutamyl transpeptidase (GGT) were monitored by fluorescent imaging in vivo.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bachman JL, Pavlich CI, Boley AJ, Marcotte EM, Anslyn EV. Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access. Org Lett 2020; 22:381-385. [PMID: 31825225 DOI: 10.1021/acs.orglett.9b03981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of the carbopyronine dye Carboxy ATTO 647N from simple materials is reported. This route proceeds in 11 forward steps from 3-bromoaniline with the key xanthone intermediate formed using a new oxidation methodology. The step utilizes an oxidation cycle with base, water, iodine, and more than doubles the yield of the standard permanganate oxidation methodology, accessing gram-scale quantities of this late-stage product. From this, Carboxy ATTO 647N was prepared in only four additional steps. This facile route to a complex fluorophore is expected to enable further studies in fluorescence imaging.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Cyprian I Pavlich
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alexander J Boley
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Edward M Marcotte
- Department of Molecular Biosciences , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eric V Anslyn
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
30
|
Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, Shemetov AA, Testa I, Verkhusha VV. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 2020; 11:239. [PMID: 31932632 PMCID: PMC6957686 DOI: 10.1038/s41467-019-13897-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve ~40 nm resolution in live cells. In living mice we detect ~105 fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670 nm to 720 nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jonatan Alvelid
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Francesca Pennacchietti
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA. .,Medicum, Faculty of Medicine, University of Helsinki, 00029, Helsinki, Finland.
| |
Collapse
|
31
|
Zhao M, Guo YS, Xu WN, Zhao YF, Xie HY, Li HJ, Chen XF, Zhao RS, Guo DS. Far-red to near-infrared fluorescent probes based on silicon-substituted xanthene dyes for sensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Kanagasundaram T, Timmermann A, Kramer CS, Kopka K. A new approach to silicon rhodamines by Suzuki-Miyaura coupling - scope and limitations. Beilstein J Org Chem 2019; 15:2569-2576. [PMID: 31728171 PMCID: PMC6839552 DOI: 10.3762/bjoc.15.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Silicon rhodamines are of particular interest because of their advantageous dye properties (fluorescence- and biostability, quantum efficiency, tolerance to photobleaching). Therefore, silicon rhodamines find frequent application in STED (stimulated emission depletion) microscopy, as sensor molecules for, e.g., ions and as fluorophores for the optical imaging of tumors. Different strategies were already employed for their synthesis. Because of just three known literature examples in which Suzuki–Miyaura cross couplings gave access to silicon rhodamines in poor to moderate yields, we wanted to improve these first valuable experimental results. Results: The preparation of the xanthene triflate was enhanced and several boron sources were screened to find the optimal coupling partner. After optimization of the palladium catalyst, different substituted boroxines were assessed to explore the scope of the Pd-catalyzed cross-coupling reaction. Conclusions: A number of silicon rhodamines were synthesized under the optimized conditions in up to 91% yield without the necessity of HPLC purification. Moreover, silicon rhodamines functionalized with free acid moieties are directly accessible in contrast to previously described methods.
Collapse
Affiliation(s)
- Thines Kanagasundaram
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Institute of Inorganic Chemistry, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Antje Timmermann
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Institute of Inorganic Chemistry, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Carsten S Kramer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
33
|
Matthias J, Kanagasundaram T, Kopka K, Kramer CS. Synthesis of a dihalogenated pyridinyl silicon rhodamine for mitochondrial imaging by a halogen dance rearrangement. Beilstein J Org Chem 2019; 15:2333-2343. [PMID: 31666868 PMCID: PMC6808212 DOI: 10.3762/bjoc.15.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Since their first synthesis, silicon xanthenes and the subsequently developed silicon rhodamines (SiR) gained a lot of attention as attractive fluorescence dyes offering a broad field of application. We aimed for the synthesis of a fluorinable pyridinyl silicon rhodamine for the use in multimodal (PET/OI) medical imaging of mitochondria in cancerous cells. Results: A dihalogenated fluorinatable pyridinyl rhodamine could be successfully synthesized with the high yield of 85% by application of a halogen dance (HD) rearrangement. The near-infrared dye shows a quantum yield of 0.34, comparable to other organelle targeting SiR derivatives and absorbs at 665 nm (εmax = 34 000 M−1cm−1) and emits at 681 nm (τ = 1.9 ns). Using colocalization experiments with MitoTracker® Green FM, we could prove the intrinsic targeting ability to mitochondria in two human cell lines (Pearson coefficient >0.8). The dye is suitable for live cell STED nanoscopy imaging and shows a nontoxic profile which makes it an appropriate candidate for medical imaging. Conclusions: We present a biocompatible, nontoxic, small molecule near-infrared dye with the option of subsequent radiolabelling and excellent optical properties for medical and bioimaging. As a compound with intrinsic mitochondria targeting ability, the radiolabelled analogue can be applied in multimodal (PET/OI) imaging of mitochondria for diagnostic and therapeutic use in, e.g., cancer patients.
Collapse
Affiliation(s)
- Jessica Matthias
- Max Planck Institute for Medical Research, Department of Optical Nanoscopy, Jahnstraße 29, 69120 Heidelberg, Germany.,Helmholtz International Graduate School, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Thines Kanagasundaram
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, 69120 Heidelberg, Germany.,Institute of Inorganic Chemistry, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carsten S Kramer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Fluorescent Tau-derived Peptide for Monitoring Microtubules in Living Cells. ACS OMEGA 2019; 4:11245-11250. [PMID: 31460226 PMCID: PMC6648849 DOI: 10.1021/acsomega.9b01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 06/04/2023]
Abstract
Microtubules (MTs) are key cytoskeletal components that modulate various cellular activities with their dynamic structural changes, including polymerization and depolymerization. To monitor the dynamics of MTs in living cells, many drug-based fluorescent probes have been developed; however, these also potentially disturb the polymerization/depolymerization of MTs. Here, we report nondrug, peptide-based fluorescent probes to monitor MTs in living cells. We employed a Tau-derived peptide (TP) that has been shown to bind MTs without inhibiting polymerization/depolymerization in vitro. We show that a tetramethylrhodamine (TMR)-labeled TP (TP-TMR) is internalized into HepG2 cells and binds to intracellular MTs, enabling visualization of MTs as clear, fibrous structures. The binding of TP-TMR shows no apparent effects on polymerization/depolymerization of MTs induced by MT-targeted drugs and temperature change. The main uptake mechanism of TP-TMR was elucidated as endocytosis, and partial endosomal escape resulted in the binding of TP-TMR to MTs. TP-TMR exhibited no cytotoxicity compared with MT-targeted drug scaffolds. These results indicate that TP scaffolds can be exploited as useful MT-targeted tools in living cells, such as in long-term imaging of MTs.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and Centre for Research
on Green Sustainable Chemistry, Tottori
University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Takahisa Yamamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and Centre for Research
on Green Sustainable Chemistry, Tottori
University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Takashi Iwasaki
- Department
of Bioresources Science, Graduate School of Agricultural Sciences, Tottori University, Koyama-Minami 4-101, Tottori 680-8553, Japan
| | - Arif Md. Rashedul Kabir
- Faculty of Science and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Faculty of Science and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Faculty of Science and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazunori Matsuura
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and Centre for Research
on Green Sustainable Chemistry, Tottori
University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| |
Collapse
|
35
|
Grimm F, Nizamov S, Belov VN. Green-Emitting Rhodamine Dyes for Vital Labeling of Cell Organelles Using STED Super-Resolution Microscopy. Chembiochem 2019; 20:2248-2254. [PMID: 31050112 DOI: 10.1002/cbic.201900177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Indexed: 12/12/2022]
Abstract
Fluorescence microscopy reveals the localization, spatial distribution, and temporal dynamics of the specifically labeled organelles in living cells. Labeling with exogenous conjugates prepared from fluorescent dyes and small molecules (ligands) is an attractive alternative to the use of fluorescent proteins, but proved to be challenging due to insufficient cell-permeability of the probes, unspecific staining, or low dye brightness. We evaluated four green-emitting rhodamine dyes and their conjugates intended for the specific labeling of lysosomes, mitochondria, tubulin, and actin in living cells. The imaging performance of the probes in living human fibroblasts has been studied by using confocal and stimulated emission depletion (STED) super-resolution microscopy with a commercial 595 nm STED laser. Two bright and photostable dyes (LIVE 510 and LIVE 515) provide specific and versatile staining.
Collapse
Affiliation(s)
- Florian Grimm
- Abberior GmbH, Hans-Adolf-Krebs-Weg 1, 37077, Göttingen, Germany
| | - Shamil Nizamov
- Abberior GmbH, Hans-Adolf-Krebs-Weg 1, 37077, Göttingen, Germany
| | - Vladimir N Belov
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
36
|
Van Itallie CM, Lidman KF, Tietgens AJ, Anderson JM. Newly synthesized claudins but not occludin are added to the basal side of the tight junction. Mol Biol Cell 2019; 30:1406-1424. [PMID: 30943107 PMCID: PMC6724697 DOI: 10.1091/mbc.e19-01-0008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A network of claudin strands creates continuous cell–cell contacts to form the intercellular tight junction barrier; a second protein, occludin, is associated along these strands. The physiological barrier remains stable despite protein turnover, which involves removal and replacement of claudins both in the steady state and during junction remodeling. Here we use a pulse–block–pulse labeling protocol with fluorescent ligands to label SNAP/CLIP-tags fused to claudins and occludin to identify their spatial trafficking pathways and kinetics in Madin–Darby canine kidney monolayers. We find that claudins are first delivered to the lateral membrane and, over time, enter the junction strand network from the basal side; this is followed by slow replacement of older claudins in the strands. In contrast, even at early times, newly synthesized occludin is found throughout the network. Taking the results together with our previous documentation of the mechanism for claudin strand assembly in a fibroblast model, we speculate that newly synthesized claudins are added at strand breaks and free ends; these are most common in the basalmost edge of the junction. In contrast, occludin can be added directly within the strand network. We further demonstrate that claudin trafficking and half-life depend on carboxy-terminal sequences and that different claudins compete for tight junction localization.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - Karin Fredriksson Lidman
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| | - James Melvin Anderson
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Wang L, Frei MS, Salim A, Johnsson K. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J Am Chem Soc 2019; 141:2770-2781. [PMID: 30550714 DOI: 10.1021/jacs.8b11134] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Super-resolution fluorescence microscopy is a powerful tool to visualize biomolecules and cellular structures at the nanometer scale. Employing these techniques in living cells has opened up the possibility to study dynamic processes with unprecedented spatial and temporal resolution. Different physical approaches to super-resolution microscopy have been introduced over the last years. A bottleneck to apply these approaches for live-cell imaging has become the availability of appropriate fluorescent probes that can be specifically attached to biomolecules. In this Perspective, we discuss the role of small-molecule fluorescent probes for live-cell super-resolution microscopy and the challenges that need to be overcome for their generation. Recent trends in the development of labeling strategies are reviewed together with the required chemical and spectroscopic properties of the probes. Finally, selected examples of the use of small-molecule fluorescent probes in live-cell super-resolution microscopy are given.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| | - Michelle S Frei
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Aleksandar Salim
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kai Johnsson
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
38
|
Butkevich AN, Bossi ML, Lukinavičius G, Hell SW. Triarylmethane Fluorophores Resistant to Oxidative Photobluing. J Am Chem Soc 2019; 141:981-989. [PMID: 30562459 PMCID: PMC6728092 DOI: 10.1021/jacs.8b11036] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Spectral stability
of small-molecule fluorescent probes is required
for correct interpretation and reproducibility of multicolor fluorescence
imaging data, in particular under high (de)excitation light intensities
of super-resolution imaging or in single-molecule applications. We
propose a synthetic approach to a series of spectrally stable rhodamine
fluorophores based on sequential Ru- and Cu-catalyzed transformations,
evaluate their stability against photobleaching and photoconversion
in the context of other fluorophores using chemometric analysis, and
demonstrate chemical reactivity of fluorophore photoproducts. The
substitution patterns providing the photoconversion-resistant triarylmethane
fluorophores have been identified, and the applicability of nonbluing
labels in live-cell STED nanoscopy is demonstrated.
Collapse
Affiliation(s)
- Alexey N Butkevich
- Department of NanoBiophotonics , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany.,Department of Optical Nanoscopy , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| | - Gražvydas Lukinavičius
- Department of NanoBiophotonics , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany
| | - Stefan W Hell
- Department of NanoBiophotonics , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany.,Department of Optical Nanoscopy , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| |
Collapse
|
39
|
Abstract
Fluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| | - Péter Kele
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| |
Collapse
|
40
|
Kamper M, Ta H, Jensen NA, Hell SW, Jakobs S. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat Commun 2018; 9:4762. [PMID: 30420676 PMCID: PMC6232180 DOI: 10.1038/s41467-018-07246-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/17/2018] [Indexed: 01/18/2023] Open
Abstract
The near infrared (NIR) optical window between the cutoff for hemoglobin absorption at 650 nm and the onset of increased water absorption at 900 nm is an attractive, yet largely unexplored, spectral regime for diffraction-unlimited super-resolution fluorescence microscopy (nanoscopy). We developed the NIR fluorescent protein SNIFP, a bright and photostable bacteriophytochrome, and demonstrate its use as a fusion tag in live-cell microscopy and STED nanoscopy. We further demonstrate dual color red-confocal/NIR-STED imaging by co-expressing SNIFP with a conventional red fluorescent protein.
Collapse
Affiliation(s)
- Maria Kamper
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nickels A Jensen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
41
|
Klein A, Hank S, Raulf A, Joest EF, Tissen F, Heilemann M, Wieneke R, Tampé R. Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem Sci 2018; 9:7835-7842. [PMID: 30429993 PMCID: PMC6194584 DOI: 10.1039/c8sc02910e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate labeling of endogenous proteins for advanced light microscopy in living cells remains challenging. Nanobodies have been widely used for antigen labeling, visualization of subcellular protein localization and interactions. To facilitate an expanded application, we present a scalable and high-throughput strategy to simultaneously target multiple endogenous proteins in living cells with micro- to nanometer resolution. For intracellular protein labeling, we advanced nanobodies by site-specific and stoichiometric attachment of bright organic fluorophores. Their fast and fine-tuned intracellular transfer by microfluidic cell squeezing enabled high-throughput delivery with less than 10% dead cells. This strategy allowed for the dual-color imaging of distinct endogenous cellular structures, and culminated in super-resolution imaging of native protein networks in genetically non-modified living cells. The simultaneous delivery of multiple engineered nanobodies does not only offer exciting prospects for multiplexed imaging of endogenous protein, but also holds potential for visualizing native cellular structures with unprecedented accuracy.
Collapse
Affiliation(s)
- A Klein
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - S Hank
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - A Raulf
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt/Main , Germany
| | - E F Joest
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - F Tissen
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - M Heilemann
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt/Main , Germany
| | - R Wieneke
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - R Tampé
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
- Cluster of Excellence - Macromolecular Complexes , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany
| |
Collapse
|
42
|
Masch JM, Steffens H, Fischer J, Engelhardt J, Hubrich J, Keller-Findeisen J, D'Este E, Urban NT, Grant SGN, Sahl SJ, Kamin D, Hell SW. Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling. Proc Natl Acad Sci U S A 2018; 115:E8047-E8056. [PMID: 30082388 PMCID: PMC6112726 DOI: 10.1073/pnas.1807104115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extending superresolution fluorescence microscopy to living animals has remained a challenging frontier ever since the first demonstration of STED (stimulated emission depletion) nanoscopy in the mouse visual cortex. The use of fluorescent proteins (FPs) in in vivo STED analyses has been limiting available fluorescence photon budgets and attainable image contrasts, in particular for far-red FPs. This has so far precluded the definition of subtle details in protein arrangements at sufficient signal-to-noise ratio. Furthermore, imaging with longer wavelengths holds promise for reducing photostress. Here, we demonstrate that a strategy based on enzymatic self-labeling of the HaloTag fusion protein by high-performance synthetic fluorophore labels provides a robust avenue to superior in vivo analysis with STED nanoscopy in the far-red spectral range. We illustrate our approach by mapping the nanoscale distributions of the abundant scaffolding protein PSD95 at the postsynaptic membrane of excitatory synapses in living mice. With silicon-rhodamine as the reporter fluorophore, we present imaging with high contrast and low background down to ∼70-nm lateral resolution in the visual cortex at ≤25-µm depth. This approach allowed us to identify and characterize the diversity of PSD95 scaffolds in vivo. Besides small round/ovoid shapes, a substantial fraction of scaffolds exhibited a much more complex spatial organization. This highly inhomogeneous, spatially extended PSD95 distribution within the disk-like postsynaptic density, featuring intricate perforations, has not been highlighted in cell- or tissue-culture experiments. Importantly, covisualization of the corresponding spine morphologies enabled us to contextualize the diverse PSD95 patterns within synapses of different orientations and sizes.
Collapse
Affiliation(s)
- Jennifer-Magdalena Masch
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Heinz Steffens
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Joachim Fischer
- Optical Nanoscopy Division, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Johann Engelhardt
- Optical Nanoscopy Division, German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jasmine Hubrich
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Elisa D'Este
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nicolai T Urban
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dirk Kamin
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
- Optical Nanoscopy Division, German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
|
44
|
Lukinavičius G, Mitronova GY, Schnorrenberg S, Butkevich AN, Barthel H, Belov VN, Hell SW. Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chem Sci 2018; 9:3324-3334. [PMID: 29780462 PMCID: PMC5932598 DOI: 10.1039/c7sc05334g] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
We introduce fluorogenic tubulin probes based on the recently reported fluorescent dyes (510R, 580CP, GeR and SiR) and chemotherapy agents - taxanes (docetaxel, cabazitaxel and larotaxel). The cytotoxicity of the final probe, its staining performance and specificity strongly depend on both components. We found correlation between the aggregation efficiency (related to the spirolactonization of fluorophore) and cytotoxicity. Probe optimization allowed us to reach 29 ± 11 nm resolution in stimulated emission depletion (STED) microscopy images of the microtubule network in living human fibroblasts. Application to living fruit fly (Drosophila melanogaster) tissues highlighted two distinct structures: microtubules and tracheoles. We identified 6-carboxy isomers of 580CP and SiR dyes as markers for chitin-containing taenidia, a component of tracheoles. STED microscopy revealed correlation between the taenidia periodicity and the diameter of the tracheole. Combined tubulin and taenidia STED imaging showed close interaction between the microtubules and respiratory networks in living tissues of the insect larvae.
Collapse
Affiliation(s)
- Gražvydas Lukinavičius
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| | - Gyuzel Y Mitronova
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| | - Sebastian Schnorrenberg
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| | - Alexey N Butkevich
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| | - Hannah Barthel
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| | - Vladimir N Belov
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| | - Stefan W Hell
- Max Planck Institute for Biophysical Chemistry , Department of NanoBiophotonics , Am Fassberg 11 , 37077 Göttingen , Germany .
| |
Collapse
|