1
|
Lai WF, Fong M. Use of comparative research in the study of chemistry education: A systematic analysis of the literature. Heliyon 2024; 10:e22881. [PMID: 38169657 PMCID: PMC10758714 DOI: 10.1016/j.heliyon.2023.e22881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Comparative research can help identify the similarities of and differences in different contexts, enabling us to recognize more possibilities and strategies of enhancing our understanding of different aspects of education. To review and analyse the current status of using comparative research designs in chemistry education research, a Boolean keyword search in Scopus and Web of Science has been performed to retrieve articles published from January 2016 to February 2023. In total 7682 entries have been retrieved, but less than 0.01 % of them have applied comparative research in addressing issues of chemistry education. Twelve of the retrieved articles have met the inclusion criteria for further analysis. Though comparative research has been found to be used by over 65 % of the analysed articles to study teaching and learning in chemistry education, its application in curriculum development and student development has been demonstrated by some analysed studies. In addition, 75 % of the analysed articles have declared being funded by local and/or national funding sources. This suggests that the importance of comparative research in chemistry education has been recognized at the national level in various countries. It is hoped that the opportunities brought about by comparative research designs as revealed in this article can enhance the varieties and possibilities in chemistry education research in the forthcoming future.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Education, University of Bristol, Bristol BS8 ITS, United Kingdom
| | - Melody Fong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Akhdar A, Gautier A, Hjelmgaard T, Faure S. N-Alkylated Aromatic Poly- and Oligoamides. Chempluschem 2021; 86:298-312. [PMID: 33620768 DOI: 10.1002/cplu.202000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Indexed: 01/18/2023]
Abstract
N-alkylated aromatic poly- and oligoamides are a particular class of abiotic foldamers that is deprived of the capability of forming intramolecular hydrogen-bonding networks to stabilize their tri-dimensional structure. The alkylation of the backbone amide nitrogen atoms greatly increases the chemical diversity accessible for aromatic poly- and oligoamides. However, the nature and the conformational preferences of the N,N-disubstituted amides profoundly modify the folding properties of these aromatic poly- and oligoamides. In this Review, representative members of this class of aromatic poly- and oligoamides will be highlighted, among them N-alkylated phenylene terephthalamides, benzanilides, pyridylamides, and aminomethyl benzamide oligomers. The principal synthetic pathways to the main classes of N-alkylated aromatic polyamides with narrow to broad molecular-weight distribution, or oligoamides with specific sequences, will be detailed and their foldameric properties will be discussed. The Review will end by describing the few applications reported to date and future prospects for the field.
Collapse
Affiliation(s)
- Ayman Akhdar
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Arnaud Gautier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Thomas Hjelmgaard
- Rockwool International A/S, Hovedgaden 584, 2640, Hedehusene, Denmark
| | - Sophie Faure
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Fuller AA, Dounay AB, Schirch D, Rivera DG, Hansford KA, Elliott AG, Zuegg J, Cooper MA, Blaskovich MAT, Hitchens JR, Burris-Hiday S, Tenorio K, Mendez Y, Samaritoni JG, O’Donnell MJ, Scott WL. Multi-Institution Research and Education Collaboration Identifies New Antimicrobial Compounds. ACS Chem Biol 2020; 15:3187-3196. [PMID: 33242957 PMCID: PMC7928911 DOI: 10.1021/acschembio.0c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
New
antibiotics are urgently needed to address increasing rates
of multidrug resistant infections. Seventy-six diversely functionalized
compounds, comprising five structural scaffolds, were synthesized
and tested for their ability to inhibit microbial growth. Twenty-six
compounds showed activity in the primary phenotypic screen at the
Community for Open Antimicrobial Drug Discovery (CO-ADD). Follow-up
testing of active molecules confirmed that two unnatural dipeptides
inhibit the growth of Cryptococcus neoformans with
a minimum inhibitory concentration (MIC) ≤ 8 μg/mL. Syntheses
were carried out by undergraduate students at five schools implementing
Distributed Drug Discovery (D3) programs. This report showcases that
a collaborative research and educational process is a powerful approach
to discover new molecules inhibiting microbial growth. Educational
gains for students engaged in this project are highlighted in parallel
to the research advances. Aspects of D3 that contribute to its success,
including an emphasis on reproducibility of procedures, are discussed
to underscore the power of this approach to solve important research
problems and to inform other coupled chemical biology research and
teaching endeavors.
Collapse
Affiliation(s)
- Amelia A. Fuller
- Santa Clara University, Department of Chemistry & Biochemistry, Santa Clara, California 95053, United States
| | - Amy B. Dounay
- Department of Chemistry and Biochemistry, Colorado College, 14 E. Cache La Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Douglas Schirch
- Department of Chemistry, Goshen College, 1700 South Main Street, Goshen, Indiana 46526, United States
| | - Daniel G. Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Karl A. Hansford
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alysha G. Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matthew A Cooper
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jacob R. Hitchens
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Sarah Burris-Hiday
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Kristiana Tenorio
- Santa Clara University, Department of Chemistry & Biochemistry, Santa Clara, California 95053, United States
| | - Yanira Mendez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - J. Geno Samaritoni
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Martin J. O’Donnell
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - William L. Scott
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
4
|
Rivas MA, Courouble VC, Baker MC, Cookmeyer DL, Fiore KE, Frost AJ, Godbe KN, Jordan MR, Krasnow EN, Mollo A, Ridings ST, Sawada K, Shroff KD, Studnitzer B, Thiele GAR, Sisto AC, Nawal S, Huff AR, Fairman R, Johnson KA, Beld J, Kokona B, Charkoudian LK. The Effect of Divalent Cations on the Thermostability of Type II Polyketide Synthase Acyl Carrier Proteins. AIChE J 2018; 64:4308-4318. [PMID: 31527922 DOI: 10.1002/aic.16402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The successful engineering of biosynthetic pathways hinges on understanding the factors that influence acyl carrier protein (ACP) stability and function. The stability and structure of ACPs can be influenced by the presence of divalent cations, but how this relates to primary sequence remains poorly understood. As part of a course-based undergraduate research experience, we investigated the thermostability of type II polyketide synthase (PKS) ACPs. We observed an approximate 40 °C range in the thermostability amongst the 14 ACPs studied, as well as an increase in stability (5 - 26 °C) of the ACPs in the presence of divalent cations. Distribution of charges in the helix II-loop-helix III region was found to impact the enthalpy of denaturation. Taken together, our results reveal clues as to how the sequence of type II PKS ACPs relates to their structural stability, information that can be used to study how ACP sequence relates to function.
Collapse
Affiliation(s)
| | - Valentine C. Courouble
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Miranda C. Baker
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Kristen E. Fiore
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Alexander J. Frost
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Michael R. Jordan
- Dept. of Physics Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Emily N. Krasnow
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Aurelio Mollo
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Stephen T. Ridings
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Keisuke Sawada
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Kavita D. Shroff
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Bradley Studnitzer
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Grace A. R. Thiele
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Saadia Nawal
- Dept. of Chemistry Haverford College Haverford PA 19041
| | - Adam R. Huff
- Dept. of Chemistry Haverford College Haverford PA 19041
| | | | | | - Joris Beld
- Dept. of Microbiology and Immunology Drexel University College of Medicine Philadelphia PA 19102
| | | | | |
Collapse
|
5
|
Cooper KM, Brownell SE. Developing Course-Based Research Experiences in Discipline-Based Education Research: Lessons Learned and Recommendations. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2018; 19:jmbe-19-88. [PMID: 30197730 PMCID: PMC6113666 DOI: 10.1128/jmbe.v19i2.1567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/07/2018] [Indexed: 05/06/2023]
Abstract
In this perspective, we highlight the opportunity for the biology education research community to develop course-based research experiences (CREs) or course-based undergraduate research experiences (CUREs) in discipline-based education research. Building on our prior experience developing and teaching four biology education research CREs, we present opportunities, potential pitfalls, and recommendations for discipline-based education researchers interested in integrating their research and teaching in the context of a CRE.
Collapse
Affiliation(s)
| | - Sara E. Brownell
- Corresponding author. Mailing address: School of Life Sciences, 451 E. Tyler Mall, Arizona State University, Tempe, AZ 85281. Phone: 480-965-0803. E-mail:
| |
Collapse
|