1
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
2
|
Wagner L, Stang J, Derra S, Hollmann T, Hahn F. Towards understanding oxygen heterocycle-forming biocatalysts: a selectivity study of the pyran synthase PedPS7. Org Biomol Chem 2022; 20:9645-9649. [PMID: 36412217 DOI: 10.1039/d2ob02064e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intramolecular oxa-Michael addition-catalysing cyclases are widespread in polyketide biosynthetic pathways. Although they have significant potential in biotechnology and chemoenzymatic synthesis of chiral heterocycles, they have only scarcely been studied. Here, we present detailed investigations on the selectivity profile of the pyran synthase PedPS7 showing that it combines broad substrate tolerance with high selectivity for the formation of up to two new stereocentres and relaxed precursor stereoisomer discrimination. Two of the four possible tetrahydropyran stereoisomers are reliably accessible by this enzyme. The results indicate fundamental differences between the individual subtypes of intramolecular oxa-Michael addition-catalysing cyclases.
Collapse
Affiliation(s)
- Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Jörg Stang
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Sebastian Derra
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Hobson C, Jenner M, Jian X, Griffiths D, Roberts DM, Rey-Carrizo M, Challis GL. Diene incorporation by a dehydratase domain variant in modular polyketide synthases. Nat Chem Biol 2022; 18:1410-1416. [PMID: 36109649 PMCID: PMC7613849 DOI: 10.1038/s41589-022-01127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Modular polyketide synthases (PKSs) are biosynthetic assembly lines that construct structurally diverse natural products with wide-ranging applications in medicine and agriculture. Various mechanisms contribute to structural diversification during PKS-mediated chain assembly, including dehydratase (DH) domain-mediated elimination of water from R and S-configured 3-hydroxy-thioesters to introduce E- and Z-configured carbon-carbon double bonds, respectively. Here we report the discovery of a DH domain variant that catalyzes the sequential elimination of two molecules of water from a (3R, 5S)-3,5-dihydroxy thioester during polyketide chain assembly, introducing a conjugated E,Z-diene into various modular PKS products. We show that the reaction proceeds via a (2E, 5S)-2-enoyl-5-hydroxy-thioester intermediate and involves an additional universally conserved histidine residue that is absent from the active site of most conventional DH domains. These findings expand the diverse range of chemistries mediated by DH-like domains in modular PKSs, highlighting the catalytic versatility of the double hotdog fold.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Chemistry, University of Warwick, Coventry, UK.,Willow Biosciences Inc., Vancouver, British Columbia, Canada
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Xinyun Jian
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Griffiths
- Department of Chemistry, University of Warwick, Coventry, UK.,Monash University Accident Research Centre, Clayton, Victoria, Australia
| | | | - Matias Rey-Carrizo
- Department of Chemistry, University of Warwick, Coventry, UK.,BCN Medical Writing, Sabadell, Spain
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK. .,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK. .,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
5
|
Abstract
Invertebrates, particularly sponges, have been a dominant source of new marine natural products. For example, lasonolide A (LSA) is a potential anticancer molecule isolated from the marine sponge Forcepia sp., with nanomolar growth inhibitory activity and a unique cytotoxicity profile against the National Cancer Institute 60-cell-line screen. Here, we identified the putative biosynthetic pathway for LSA. Genomic binning of the Forcepia sponge metagenome revealed a Gram-negative bacterium belonging to the phylum Verrucomicrobia as the candidate producer of LSA. Phylogenetic analysis showed that this bacterium, here named "Candidatus Thermopylae lasonolidus," only has 88.78% 16S rRNA identity with the closest relative, Pedosphaera parvula Ellin514, indicating that it represents a new genus. The lasonolide A (las) biosynthetic gene cluster (BGC) was identified as a trans-acyltransferase (AT) polyketide synthase (PKS) pathway. Compared with its host genome, the las BGC exhibits a significantly different GC content and pentanucleotide frequency, suggesting a potential horizontal acquisition of the gene cluster. Furthermore, three copies of the putative las pathway were identified in the candidate producer genome. Differences between the three las repeats were observed, including the presence of three insertions, two single-nucleotide polymorphisms, and the absence of a stand-alone acyl carrier protein in one of the repeats. Even though the verrucomicrobial producer shows signs of genome reduction, its genome size is still fairly large (about 5 Mbp), and, compared to its closest free-living relative, it contains most of the primary metabolic pathways, suggesting that it is in the early stages of reduction. IMPORTANCE While sponges are valuable sources of bioactive natural products, a majority of these compounds are produced in small quantities by uncultured symbionts, hampering the study and clinical development of these unique compounds. Lasonolide A (LSA), isolated from marine sponge Forcepia sp., is a cytotoxic molecule active at nanomolar concentrations, which causes premature chromosome condensation, blebbing, cell contraction, and loss of cell adhesion, indicating a novel mechanism of action and making it a potential anticancer drug lead. However, its limited supply hampers progression to clinical trials. We investigated the microbiome of Forcepia sp. using culture-independent DNA sequencing, identified genes likely responsible for LSA synthesis in an uncultured bacterium, and assembled the symbiont's genome. These insights provide future opportunities for heterologous expression and cultivation efforts that may minimize LSA's supply problem.
Collapse
|
6
|
Orfali R, Perveen S, Al-Taweel A, Ahmed AF, Majrashi N, Alluhay K, Khan A, Luciano P, Taglialatela-Scafati O. Penipyranicins A-C: Antibacterial Methylpyran Polyketides from a Hydrothermal Spring Sediment Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2020; 83:3591-3597. [PMID: 33296194 DOI: 10.1021/acs.jnatprod.0c00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four new aromatic polyketides (1-4) were isolated from Penicillium sp. RO-11, obtained from the sediment of a hydrothermal spring in the southwestern region of Saudi Arabia. The new compounds are penipyranicins A-C (1-3), characterized by a 4-methyl-4H-pyran moiety, a structural motif unprecedented among fungal polyketides, and the naphthopyrone derivative isopyrenulin (4). The structures of the new compounds were elucidated on the basis of data from mass spectrometry, 1D and 2D NMR analysis, and comparison between experimental and time-dependent density functional theory-calculated electronic circular dichroism spectra. A plausible biosynthetic pathway connecting penipyranicins and isopyrenulin is proposed. The isolated compounds were active against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Najwa Majrashi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia
| | - Khulud Alluhay
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Paolo Luciano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| |
Collapse
|
7
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Hollmann T, Berkhan G, Wagner L, Sung KH, Kolb S, Geise H, Hahn F. Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Protein Facility, ILAb Co., Ltd. NP513, The Catholic University of Korea, 420-743 Bucheon, Republic of Korea
| | - Simon Kolb
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hendrik Geise
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
9
|
Kosol S, Jenner M, Lewandowski JR, Challis GL. Protein-protein interactions in trans-AT polyketide synthases. Nat Prod Rep 2019; 35:1097-1109. [PMID: 30280735 DOI: 10.1039/c8np00066b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2018 The construction of polyketide natural products by type I modular polyketide synthases (PKSs) requires the coordinated action of several protein subunits to ensure biosynthetic fidelity. This is particularly the case for trans-AT PKSs, which in contrast to most cis-AT PKSs, contain split modules and employ several trans-acting catalytic domains. This article summarises recent advances in understanding the protein-protein interactions underpinning subunit assembly and intra-subunit communication in such systems and highlights potential avenues and approaches for future research.
Collapse
Affiliation(s)
- Simone Kosol
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
10
|
He BB, Zhou T, Bu XL, Weng JY, Xu J, Lin S, Zheng JT, Zhao YL, Xu MJ. Enzymatic Pyran Formation Involved in Xiamenmycin Biosynthesis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bei-Bei He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ting Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xu-Liang Bu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jing-Yi Weng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jian-Ting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
12
|
Sundaram S, Kim HJ, Bauer R, Thongkongkaew T, Heine D, Hertweck C. On-Line Polyketide Cyclization into Diverse Medium-Sized Lactones by a Specialized Ketosynthase Domain. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Srividhya Sundaram
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Hak Joong Kim
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Ruth Bauer
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Tawatchai Thongkongkaew
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Daniel Heine
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
- Chair for Natural Product Chemistry; Friedrich Schiller University; Jena Germany
| |
Collapse
|
13
|
Sundaram S, Kim HJ, Bauer R, Thongkongkaew T, Heine D, Hertweck C. On-Line Polyketide Cyclization into Diverse Medium-Sized Lactones by a Specialized Ketosynthase Domain. Angew Chem Int Ed Engl 2018; 57:11223-11227. [PMID: 29897642 DOI: 10.1002/anie.201804991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 12/15/2022]
Abstract
Ketosynthase (KS) domains of modular type I polyketide synthases (PKSs) typically catalyze the Claisen condensation of acyl and malonyl units to form linear chains. In stark contrast, the KS of the rhizoxin PKS branching module mediates a Michael addition, which sets the basis for a pharmacophoric δ-lactone moiety. The precise role of the KS was evaluated by site-directed mutagenesis, chemical probes, and biotransformations. Biochemical and kinetic analyses helped to dissect branching and lactonization reactions and unequivocally assign the entire sequence to the KS. Probing the range of accepted substrates with diverse synthetic surrogates in vitro, we found that the KS tolerates defined acyl chain lengths to produce five- to seven-membered lactones. These results show that the KS is multifunctional, as it catalyzes β-branching and lactonization. Information on the increased product portfolio of the unusual, TE-independent on-line cyclization is relevant for synthetic biology approaches.
Collapse
Affiliation(s)
- Srividhya Sundaram
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Hak Joong Kim
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Ruth Bauer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Tawatchai Thongkongkaew
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Daniel Heine
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany.,Chair for Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|