1
|
Kalia VC, Gong C, Shanmugam R, Lee JK. Prospecting Microbial Genomes for Biomolecules and Their Applications. Indian J Microbiol 2022; 62:516-523. [PMID: 36458216 PMCID: PMC9705627 DOI: 10.1007/s12088-022-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022] Open
Abstract
Bioactive molecules of microbial origin are finding increasing biotechnological applications. Their sources range from the terrestrial, marine, and endophytic to the human microbiome. These biomolecules have unique chemical structures and related groups, which enable them to improve the efficiency of the bioprocesses. This review focuses on the applications of biomolecules in bioremediation, agriculture, food, pharmaceutical industries, and human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Chunjie Gong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 People’s Republic of China
| | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
2
|
The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. J Biol Chem 2022; 298:102480. [PMID: 36108739 PMCID: PMC9582728 DOI: 10.1016/j.jbc.2022.102480] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
The Natural Product Domain Seeker (NaPDoS) webtool detects and classifies ketosynthase (KS) and condensation domains from genomic, metagenomic, and amplicon sequence data. Unlike other tools, a phylogeny-based classification scheme is used to make broader predictions about the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes in which these domains are found. NaPDoS is particularly useful for the analysis of incomplete biosynthetic genes or gene clusters, as are often observed in poorly assembled genomes and metagenomes, or when loci are not clustered, as in eukaryotic genomes. To help support the growing interest in sequence-based analyses of natural product biosynthetic diversity, here we introduce version 2 of the webtool, NaPDoS2, available at http://napdos.ucsd.edu/napdos2. This update includes the addition of 1417 KS sequences, representing a major expansion of the taxonomic and functional diversity represented in the webtool database. The phylogeny-based KS classification scheme now recognizes 41 class and subclass assignments, including new type II PKS subclasses. Workflow modifications accelerate run times, allowing larger datasets to be analyzed. In addition, default parameters were established using statistical validation tests to maximize KS detection and classification accuracy while minimizing false positives. We further demonstrate the applications of NaPDoS2 to assess PKS biosynthetic potential using genomic, metagenomic, and PCR amplicon datasets. These examples illustrate how NaPDoS2 can be used to predict biosynthetic potential and detect genes involved in the biosynthesis of specific structure classes or new biosynthetic mechanisms.
Collapse
|
3
|
Two-Dimensional Cell Separation: a High-Throughput Approach to Enhance the Culturability of Bacterial Cells from Environmental Samples. Microbiol Spectr 2022; 10:e0000722. [PMID: 35467387 PMCID: PMC9248899 DOI: 10.1128/spectrum.00007-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Culture-independent sequence data from various environmental samples have revealed an immense microbial diversity of environmental, clinical, and industrial importance that has not yet been cultured. Cultivation is imperative to validate findings emerging from cultivation-independent molecular data and exploit the isolated organisms for biotechnological purposes. Efforts have been made to boost the cultivability of microbes from environmental samples by use of a range of techniques and instrumentation. The manuscript presents a novel yet simple and innovative approach to improving the cultivability of natural microorganisms without sophisticated instrumentation. By employing gradient centrifugation combined with serial dilution (“two-dimensional cell separation”), significantly higher numbers of genera (>2-fold higher) and species (>3-fold higher) were isolated from environmental samples, including soil, anaerobic sludge, and landfill leachate, than from using serial dilution alone. This simple and robust protocol can be modified for any environment and culture medium and provides access to untapped microbial diversity. IMPORTANCE In the manuscript, we have developed a novel yet simple and innovative approach to improving the cultivability of natural microorganisms without sophisticated instrumentation. The method used gradient centrifugation combined with serial dilution (two-dimensional cell separation) to improve taxum recovery from samples. This simple and robust protocol can be modified for any environment and culture medium and provides access to untapped microbial diversity. This approach can be incorporated with less labor and complexity in laboratories with minimal instrumentation. As cultivation is a workflow that is well suited to lower-resource microbiology labs, we believe improvements in cultivability can increase opportunities for scientific collaborations between low-resource labs and groups focused on high-resource cultivation-independent methodologies.
Collapse
|
4
|
Salazar-Hamm PS, Hathaway JJM, Winter AS, Caimi NA, Buecher DC, Valdez EW, Northup DE. Great diversity of KS α sequences from bat-associated microbiota suggests novel sources of uncharacterized natural products. FEMS MICROBES 2022; 3:xtac012. [PMID: 35573391 PMCID: PMC9097503 DOI: 10.1093/femsmc/xtac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Polyketide synthases (PKSs) are multidomain enzymes in microorganisms that synthesize complex, bioactive molecules. PKS II systems are iterative, containing only a single representative of each domain: ketosynthase alpha (KS[Formula: see text]), ketosynthase beta and the acyl carrier protein. Any gene encoding for one of these domains is representative of an entire PKS II biosynthetic gene cluster (BGC). Bat skin surfaces represent an extreme environment prolific in Actinobacteria that may constitute a source for bioactive molecule discovery. KS[Formula: see text] sequences were obtained from culturable bacteria from bats in the southwestern United States. From 467 bat bacterial isolates, we detected 215 (46%) had KS[Formula: see text] sequences. Sequencing yielded 210 operational taxonomic units, and phylogenetic placement found 45 (21%) shared <85% homology to characterized metabolites. Additionally, 16 Actinobacteria genomes from the bat microbiome were analyzed for biosynthetic capacity. A range of 69-93% of the BGCs were novel suggesting the bat microbiome may contain valuable uncharacterized natural products. Documenting and characterizing these are important in understanding the susceptibility of bats to emerging infectious diseases, such as white-nose syndrome. Also noteworthy was the relationship between KS [Formula: see text] homology and total BGC novelty within each fully sequenced strain. We propose amplification and detection of KS[Formula: see text] could predict a strain's global biosynthetic capacity.
Collapse
Affiliation(s)
- Paris S Salazar-Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
- U.S. Geological Survey, Fort Collins Science Center, Department of Biology, MSC03 2020, University of New Mexico, lbuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
5
|
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21:359-378. [PMID: 35296832 DOI: 10.1038/s41573-022-00414-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and 'biosynthetic dark matter', revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Clark CM, Hernandez A, Mullowney MW, Fitz-Henley J, Li E, Romanowski SB, Pronzato R, Manconi R, Sanchez LM, Murphy BT. Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges. ISME COMMUNICATIONS 2022; 2:22. [PMID: 37938725 PMCID: PMC9723699 DOI: 10.1038/s43705-022-00105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2023]
Abstract
Microbial drug discovery programs rely heavily on accessing bacterial diversity from the environment to acquire new specialized metabolite (SM) lead compounds for the therapeutic pipeline. Therefore, knowledge of how commonly culturable bacterial taxa are distributed in nature, in addition to the degree of variation of SM production within those taxa, is critical to informing these front-end discovery efforts and making the overall sample collection and bacterial library creation process more efficient. In the current study, we employed MALDI-TOF mass spectrometry and the bioinformatics pipeline IDBac to analyze diversity within phylotype groupings and SM profiles of hundreds of bacterial isolates from two Eunapius fragilis freshwater sponges, collected 1.5 km apart. We demonstrated that within two sponge samples of the same species, the culturable bacterial populations contained significant overlap in approximate genus-level phylotypes but mostly nonoverlapping populations of isolates when grouped lower than the level of genus. Further, correlations between bacterial phylotype and SM production varied at the species level and below, suggesting SM distribution within bacterial taxa must be analyzed on a case-by-case basis. Our results suggest that two E. fragilis freshwater sponges collected in similar environments can exhibit large culturable diversity on a species-level scale, thus researchers should scrutinize the isolates with analyses that take both phylogeny and SM production into account to optimize the chemical space entering into a downstream bacterial library.
Collapse
Affiliation(s)
- Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael W Mullowney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jhewelle Fitz-Henley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emma Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Renata Manconi
- Dipartimento Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Elfeki M, Mantri S, Clark CM, Green SJ, Ziemert N, Murphy BT. Evaluating the Distribution of Bacterial Natural Product Biosynthetic Genes across Lake Huron Sediment. ACS Chem Biol 2021; 16:2623-2631. [PMID: 34605624 DOI: 10.1021/acschembio.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental microorganisms continue to serve as a major source of bioactive natural products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern medicine. Nearly all microbial NP-inspired therapies can be traced to field expeditions to collect samples from the environment. Despite the importance of these expeditions in the search for new drugs, few studies have attempted to document the extent to which NPs or their corresponding production genes are distributed within a given environment. To gain insights into this, the geographic occurrence of NP ketosynthase (KS) and adenylation (A) domains was documented across 53 and 58 surface sediment samples, respectively, covering 59,590 square kilometers of Lake Huron. Overall, no discernible NP geographic distribution patterns were observed for 90,528 NP classes of nonribosomal peptides and polyketides detected in the survey. While each sampling location harbored a similar number of A domain operational biosynthetic units (OBUs), a limited overlap of OBU type was observed, suggesting that at the sequencing depth used in this study, no single location served as a NP "hotspot". These data support the hypothesis that there is ample variation in NP occurrence between sampling sites and suggest that extensive sample collection efforts are required to fully capture the functional chemical diversity of sediment microbial communities on a regional scale.
Collapse
Affiliation(s)
- Maryam Elfeki
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Shrikant Mantri
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Chase M. Clark
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
8
|
Chevrette MG, Gavrilidou A, Mantri S, Selem-Mojica N, Ziemert N, Barona-Gómez F. The confluence of big data and evolutionary genome mining for the discovery of natural products. Nat Prod Rep 2021; 38:2024-2040. [PMID: 34787598 DOI: 10.1039/d1np00013f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers literature between 2003-2021The development and application of genome mining tools has given rise to ever-growing genetic and chemical databases and propelled natural products research into the modern age of Big Data. Likewise, an explosion of evolutionary studies has unveiled genetic patterns of natural products biosynthesis and function that support Darwin's theory of natural selection and other theories of adaptation and diversification. In this review, we aim to highlight how Big Data and evolutionary thinking converge in the study of natural products, and how this has led to an emerging sub-discipline of evolutionary genome mining of natural products. First, we outline general principles to best utilize Big Data in natural products research, addressing key considerations needed to provide evolutionary context. We then highlight successful examples where Big Data and evolutionary analyses have been combined to provide bioinformatic resources and tools for the discovery of novel natural products and their biosynthetic enzymes. Rather than an exhaustive list of evolution-driven discoveries, we highlight examples where Big Data and evolutionary thinking have been embraced for the evolutionary genome mining of natural products. After reviewing the nascent history of this sub-discipline, we discuss the challenges and opportunities of genomic and metabolomic tools with evolutionary foundations and/or implications and provide a future outlook for this emerging and exciting field of natural product research.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Athina Gavrilidou
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Shrikant Mantri
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany. .,Computational Biology Laboratory, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Nelly Selem-Mojica
- Laboratorio de Evolución de la Diversidad Metabólica, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Guanajuato, Mexico.
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Francisco Barona-Gómez
- Laboratorio de Evolución de la Diversidad Metabólica, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
9
|
Metagenomic Sequencing of Multiple Soil Horizons and Sites in Close Vicinity Revealed Novel Secondary Metabolite Diversity. mSystems 2021; 6:e0101821. [PMID: 34636675 PMCID: PMC8510542 DOI: 10.1128/msystems.01018-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Discovery of novel antibiotics is crucial for combating rapidly spreading antimicrobial resistance and new infectious diseases. Most of the clinically used antibiotics are natural products—secondary metabolites produced by soil microbes that can be cultured in the lab. Rediscovery of these secondary metabolites during discovery expeditions costs both time and resources. Metagenomics approaches can overcome this challenge by capturing both culturable and unculturable hidden microbial diversity. To be effective, such an approach should address questions like the following. Which sequencing method is better at capturing the microbial diversity and biosynthesis potential? What part of the soil should be sampled? Can patterns and correlations from such big-data explorations guide future novel natural product discovery surveys? Here, we address these questions by a paired amplicon and shotgun metagenomic sequencing survey of samples from soil horizons of multiple forest sites very close to each other. Metagenome mining identified numerous novel biosynthetic gene clusters (BGCs) and enzymatic domain sequences. Hybrid assembly of both long reads and short reads improved the metagenomic assembly and resulted in better BGC annotations. A higher percentage of novel domains was recovered from shotgun metagenome data sets than from amplicon data sets. Overall, in addition to revealing the biosynthetic potential of soil microbes, our results suggest the importance of sampling not only different soils but also their horizons to capture microbial and biosynthetic diversity and highlight the merits of metagenome sequencing methods. IMPORTANCE This study helped uncover the biosynthesis potential of forest soils via exploration of shotgun metagenome and amplicon sequencing methods and showed that both methods are needed to expose the full microbial diversity in soil. Based on our metagenome mining results, we suggest revising the historical strategy of sampling soils from far-flung places, as we found a significant number of novel and diverse BGCs and domains even in different soils that are very close to each other. Furthermore, sampling of different soil horizons can reveal the additional diversity that often remains hidden and is mainly caused by differences in environmental key parameters such as soil pH and nutrient content. This paired metagenomic survey identified diversity patterns and correlations, a step toward developing a rational approach for future natural product discovery surveys.
Collapse
|
10
|
Demko AM, Patin NV, Jensen PR. Microbial diversity in tropical marine sediments assessed using culture-dependent and culture-independent techniques. Environ Microbiol 2021; 23:6859-6875. [PMID: 34636122 DOI: 10.1111/1462-2920.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
The microbial communities associated with marine sediments are critical for ecosystem function yet remain poorly characterized. While culture-independent (CI) techniques capture the broadest perspective on community composition, culture-dependent (CD) methods can select for low abundance taxa that are missed using CI approaches. This study aimed to assess microbial diversity in tropical marine sediments at five shallow-water sites in Belize using both CD and CI techniques. The CD methods captured approximately 3% of the >800 genera detected across all sites using the CI approach. Additionally, 39 genera were only detected in culture, revealing rare taxa that were missed with the CI approach. Significantly different communities were detected across sites, with rare taxa playing an important role in distinguishing among communities. This study provides important baseline data describing shallow-water sediment microbial communities, evidence that standard cultivation techniques may be more effective than previously recognized, and the first steps towards identifying new taxa that are amenable to agar plate cultivation.
Collapse
Affiliation(s)
- Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Nastassia V Patin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep 2021; 38:292-300. [PMID: 32706349 PMCID: PMC7855266 DOI: 10.1039/d0np00029a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The question of whether culturable microorganisms will continue to be a viable source of new drug leads is inherently married to the strategies used to collect samples from the environment, the methods used to cultivate microorganisms from these samples, and the processes used to create microbial libraries. An academic microbial natural products (NP) drug discovery program with the latest innovative chromatographic and spectroscopic technology, high-throughput capacity, and bioassays will remain at the mercy of the quality of its microorganism source library. This viewpoint will discuss limitations of sample collection and microbial strain library generation practices. Additionally, it will offer suggestions to innovate these areas, particularly through the targeted cultivation of several understudied bacterial phyla and the untargeted use of mass spectrometry and bioinformatics to generate diverse microbial libraries. Such innovations have potential to impact downstream therapeutic discovery, and make its front end more informed, efficient, and less reliant on serendipity. This viewpoint is not intended to be a comprehensive review of contributing literature and was written with a focus on bacteria. Strategies to discover NPs from microbial libraries, including a variety of genomics and "OSMAC" style approaches, are considered downstream of sample collection and library creation, and thus are out of the scope of this viewpoint.
Collapse
Affiliation(s)
- Antonio Hernandez
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Linh T Nguyen
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA. and Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi, Vietnam
| | - Radhika Dhakal
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Brian T Murphy
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
12
|
Abstract
Since bacterial resistance to antibiotics is developing worldwide, new antibiotics are needed. Most antibiotics discovered so far have been found in soil-dwelling bacteria, so we instead targeted marine environments as a novel source of bioactive potential. We used amplicon sequencing of bioactive gene clusters in the microbiome of coastal seawater and sandy sediments and found the bioactive potential to be comparable to, but distinct from, the bioactive potential of selected soil microbiomes. Moreover, most of this potential is not captured by culturing. Comparing the biosynthetic potential to the corresponding microbiome composition suggested that minor constituents of the microbiome likely hold a disproportionally large fraction of the biosynthesis potential. Novel natural products have traditionally been sourced from culturable soil microorganisms, whereas marine sources have been less explored. The purpose of this study was to profile the microbial biosynthetic potential in coastal surface seawater and sandy sediment samples and to evaluate the feasibility of capturing this potential using traditional culturing methods. Amplicon sequencing of conserved ketosynthase (KS) and adenylation (AD) domains within polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes showed that seawater and, in particular, sandy sediment had a high biosynthetic potential with 6,065 and 11,072 KS operational biosynthetic units (OBUs) and 3,292 and 5,691 AD OBUs, respectively, compared to that of four soil samples collected by Charlop-Powers et al. (Z. Charlop-Powers, C. C. Pregitzer, C. Lemetre, M. A. Ternei, et al., Proc Natl Acad Sci U S A 113:14811–14816, 2016, https://doi.org/10.1073/pnas.1615581113) with 7,067 KS and 1,629 AD OBUs. All three niches harbored unique OBUs (P = 0.001 for KS and P = 0.002 for AD by permutational multivariate analysis of variance [PERMANOVA]). The total colonial growth captured 1.9% of KS and 13.6% of AD OBUs from seawater and 2.2% KS and 12.5% AD OBUs from sediment. In a subset of bioactive isolates, only four KS OBUs and one AD OBU were recovered from whole-genome sequencing (WGS) of seven seawater-derived strains and one AD OBU from a sediment-derived strain, adding up to 0.028% of the original OBU diversity. Using a pairwise regression model of classified amplicon sequence variants (ASVs) to the species level, and OBUs, we suggest a method to estimate possible links between taxonomy and biosynthetic potential, which indicated that low abundance organisms may hold a disproportional share of the biosynthetic potential. Thus, marine microorganisms are a rich source of novel bioactive potential, which is difficult to access with traditional culturing methods. IMPORTANCE Since bacterial resistance to antibiotics is developing worldwide, new antibiotics are needed. Most antibiotics discovered so far have been found in soil-dwelling bacteria, so we instead targeted marine environments as a novel source of bioactive potential. We used amplicon sequencing of bioactive gene clusters in the microbiome of coastal seawater and sandy sediments and found the bioactive potential to be comparable to, but distinct from, the bioactive potential of selected soil microbiomes. Moreover, most of this potential is not captured by culturing. Comparing the biosynthetic potential to the corresponding microbiome composition suggested that minor constituents of the microbiome likely hold a disproportionally large fraction of the biosynthesis potential.
Collapse
|
13
|
Condren AR, Costa MS, Sanchez NR, Konkapaka S, Gallik KL, Saxena A, Murphy BT, Sanchez LM. Addition of insoluble fiber to isolation media allows for increased metabolite diversity of lab-cultivable microbes derived from zebrafish gut samples. Gut Microbes 2020; 11:1064-1076. [PMID: 32202200 PMCID: PMC7524352 DOI: 10.1080/19490976.2020.1740073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is a gap in measured microbial diversity when comparing genomic sequencing techniques versus cultivation from environmental samples in a laboratory setting. Standardized methods in artificial environments may not recapitulate the environmental conditions that native microbes require for optimal growth. For example, the intestinal tract houses microbes at various pH values as well as minimal oxygen and light environments. These microbes are also exposed to an atypical source of carbon: dietary fiber compacted in fecal matter. To investigate how the addition of insoluble fiber to isolation media could affect the cultivation of microbes from zebrafish intestines, an isolate library was built and analyzed using the bioinformatics pipeline IDBac. While all isolation media encouraged the growth of species from several phyla, the extent of growth was greater with the addition of fiber allowing for easier isolation. Furthermore, fiber addition altered the metabolism of the cultivated gut-derived microbes and induced the production of unique metabolites that were not produced when microbes were otherwise grown on standard isolation media. Addition of this inexpensive carbon source to the media supported the cultivation of a diverse community whose secondary metabolite production may more closely replicate their metabolite production in vivo.
Collapse
Affiliation(s)
- Alanna R. Condren
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria S Costa
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA,Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Natalia Rivera Sanchez
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sindhu Konkapaka
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura M Sanchez
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Laura M Sanchez Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL60612, USA
| |
Collapse
|