1
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Jung J, Kim TH, Park JY, Kwon S, Sung JS, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. SARS-CoV-2 vaccine based on ferritin complexes with screened immunogenic sequences from the Fv-antibody library. J Mater Chem B 2024. [PMID: 39668674 DOI: 10.1039/d4tb01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this study, the vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed using ferritin complexes with the immunogenic sequences screened against the SARS-CoV-2 spike protein (SP) from the Fv-antibody library. The Fv-antibody library was prepared on the outer membrane of E. coli by the expression of the VH region of immunoglobulin G (IgG) with a randomized complementarity-determining region 3 (CDR3). Four Fv-antibodies to the receptor-binding domain (RBD) were screened from the Fv-antibody library, which had a comparable binding constant (KD) between SARS-CoV-2 SP and the angiotensin-converting enzyme 2 (ACE2) receptor. The binding sites of screened Fv-antibodies on the RBD were analyzed using a docking analysis, and these binding sites were used as immunogenic sequences for the vaccine. The four immunogenic sequences were modified and co-expressed as a part of ferritin which was assembled into a ferritin complex. After the vaccination of ferritin complexes to mice, the anti-sera were analyzed to have a high enough titer. Additionally, the immune responses were found to be activated by vaccination, such as the expression of IgG subclasses and the increased level of cytokines. The neutralizing activity of the anti-sera was estimated using a cell-based infection assay based on pseudo-virus expressing the SP of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Munster, Münster (48149), Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
3
|
Jahanafrooz Z, Oroojalian F, Mokhtarzadeh A, Rahdar A, Díez-Pascual AM. Nanovaccines: Immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy. Drug Dev Res 2024; 85:e22244. [PMID: 39138855 DOI: 10.1002/ddr.22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnurd, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingenieria Química, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Tan Z, Yang C, Lin PH, Ramadan S, Yang W, Rashidi Z, Lang S, Shafieichaharberoud F, Gao J, Pan X, Soloff N, Wu X, Bolin S, Pyeon D, Huang X. Inducing Long Lasting B Cell and T Cell Immunity Against Multiple Variants of SARS-CoV-2 Through Mutant Bacteriophage Qβ-Receptor Binding Domain Conjugate. Adv Healthc Mater 2024; 13:e2302755. [PMID: 38733291 PMCID: PMC11305917 DOI: 10.1002/adhm.202302755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/04/2024] [Indexed: 05/13/2024]
Abstract
More than 3 years into the global pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes are investigated as conjugates with a powerful carrier, the mutant bacteriophage Qβ (mQβ). The epitope design is critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQβ activates both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent, and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Po-Han Lin
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Benha University, Benha, 13518, Egypt
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Rashidi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nachy Soloff
- Hatzalah of Michigan, 13650 Oak Park Blvd., Oak Park, MI, 48237, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 250100, China
| | - Steven Bolin
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Tan Z, Yang W, O'Brien NA, Pan X, Ramadan S, Marsh T, Hammer N, Cywes-Bentley C, Vinacur M, Pier GB, Gildersleeve JC, Huang X. A comprehensive synthetic library of poly-N-acetyl glucosamines enabled vaccine against lethal challenges of Staphylococcus aureus. Nat Commun 2024; 15:3420. [PMID: 38658531 PMCID: PMC11043332 DOI: 10.1038/s41467-024-47457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Poly-β-(1-6)-N-acetylglucosamine (PNAG) is an important vaccine target, expressed on many pathogens. A critical hurdle in developing PNAG based vaccine is that the impacts of the number and the position of free amine vs N-acetylation on its antigenicity are not well understood. In this work, a divergent strategy is developed to synthesize a comprehensive library of 32 PNAG pentasaccharides. This library enables the identification of PNAG sequences with specific patterns of free amines as epitopes for vaccines against Staphylococcus aureus (S. aureus), an important human pathogen. Active vaccination with the conjugate of discovered PNAG epitope with mutant bacteriophage Qβ as a vaccine carrier as well as passive vaccination with diluted rabbit antisera provides mice with near complete protection against infections by S. aureus including methicillin-resistant S. aureus (MRSA). Thus, the comprehensive PNAG pentasaccharide library is an exciting tool to empower the design of next generation vaccines.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, 518000, China
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya, 13518, Egypt
| | - Terence Marsh
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48824, USA
| | - Neal Hammer
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48824, USA
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mariana Vinacur
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Zhao Q, Huang X, Wu X. Development of NHAcGD2/NHAcGD3 conjugates of bacteriophage MX1 virus-like particles as anticancer vaccines. RSC Adv 2024; 14:6246-6252. [PMID: 38375005 PMCID: PMC10875654 DOI: 10.1039/d3ra08923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
The successful development of an anticancer vaccine will be a giant leap forward in cancer prevention and treatment. Herein, the bacteriophage MX1 coat protein virus-like particles (MX1 VLPs) have been conjugated with 9NHAc-GD2 (NHAcGD2) to obtain a MX1-NHAcGD2 conjugate. Intriguingly, vaccinating against this conjugate produced a robust anti-NHAcGD2 IgG response in mice, with an average IgG titer of over 3 million. More interestingly, antibodies induced by the MX1-NHAcGD2 conjugate bound well to IMR-32 neuroblastoma cells and had potent complement-dependent cytotoxic (CDC) effects on IMR-32 cells. Inspired by the superiority of the 9NHAc-GD2 antigen, we also designed another 9NHAc-modified ganglioside antigen, 9NHAc-GD3 (NHAcGD3), to overcome the hydrolytic instability of 9-O-acetylated-GD3. By coupling NHAcGD3 with MX1 VLP, the MX1-NHAcGD3 conjugate was constructed. Strikingly, vaccination of MX1-NHAcGD3 elicited high anti-NHAcGD3 IgG antibodies, which effectively recognized human malignant melanoma SK-MEL-28 cells and had a significant CDC effect against this cell line. This study provides novel MX1-NHAcGD2 and MX1-NHAcGD3 conjugates with broad clinical translational prospects as promising anticancer vaccines.
Collapse
Affiliation(s)
- Qingyu Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University East Lansing Michigan 48824 USA
| | - Xuanjun Wu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
7
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
8
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
9
|
Ragothaman M, Yoo SY. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines (Basel) 2023; 11:vaccines11050919. [PMID: 37243023 DOI: 10.3390/vaccines11050919] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages have emerged as versatile tools in the field of bioengineering, with enormous potential in tissue engineering, vaccine development, and immunotherapy. The genetic makeup of phages can be harnessed for the development of novel DNA vaccines and antigen display systems, as they can provide a highly organized and repetitive presentation of antigens to immune cells. Bacteriophages have opened new possibilities for the targeting of specific molecular determinants of cancer cells. Phages can be used as anticancer agents and carriers of imaging molecules and therapeutics. In this review, we explored the role of bacteriophages and bacteriophage engineering in targeted cancer therapy. The question of how the engineered bacteriophages can interact with the biological and immunological systems is emphasized to comprehend the underlying mechanism of phage use in cancer immunotherapy. The effectiveness of phage display technology in identifying high-affinity ligands for substrates, such as cancer cells and tumor-associated molecules, and the emerging field of phage engineering and its potential in the development of effective cancer treatments are discussed. We also highlight phage usage in clinical trials as well as the related patents. This review provides a new insight into engineered phage-based cancer vaccines.
Collapse
Affiliation(s)
- Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Bhoge PR, Mardhekar S, Toraskar S, Subramani B, Kikkeri R. Pairing Nanoparticles Geometry with TLR Agonists to Modulate Immune Responses for Vaccine Development. ACS APPLIED BIO MATERIALS 2022; 5:5675-5681. [PMID: 36375049 DOI: 10.1021/acsabm.2c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanotechnology-based vaccine development necessitates understanding the crucial biophysical properties of nanostructures that alter immune responses. In this study, we demonstrate the synergistic effect of gold nanoparticles (AuNPs) shapes with toll-like receptor (TLR) agonists in immune modulation activity. Our results showed that CpG- and imidazoquinoline-conjugated rod-shaped AuNPs display relatively fast uptake by bone marrow-derived macrophage cells but exhibit poor immunogenic responses compared to their spherical and star-shaped AuNP counterparts. Surprisingly, star-shaped AuNPs exhibited intense pro-inflammatory cytokine secretion. Further mechanistic studies showed that star-shaped AuNPs were abundantly localized in the late endosome and lysosomal regions, whereas rod-shaped AuNPs were majorly sequestered in the mitochondrial region. These findings reveal that the shape of the nanostructures plays a pivotal role in driving the adjuvant molecules toward their receptors and altering immune responses.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Suraj Toraskar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
11
|
Lima GM, Atrazhev A, Sarkar S, Sojitra M, Reddy R, Torres-Obreque K, de Oliveira Rangel-Yagui C, Macauley MS, Monteiro G, Derda R. DNA-Encoded Multivalent Display of Chemically Modified Protein Tetramers on Phage: Synthesis and in Vivo Applications. ACS Chem Biol 2022; 17:3024-3035. [PMID: 34928124 DOI: 10.1021/acschembio.1c00835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phage display links the phenotype of displayed polypeptides with the DNA sequence in the phage genome and offers a universal method for the discovery of proteins with novel properties. However, the display of large multisubunit proteins on phages remains a challenge. A majority of protein display systems are based on monovalent phagemid constructs, but methods for the robust display of multiple copies of large proteins are scarce. Here, we describe a DNA-encoded display of a ∼ 200 kDa tetrameric l-asparaginase protein on M13 and fd phages produced by ligation of SpyCatcher-Asparaginase fusion (ScA) and PEGylated-ScA (PEG-ScA) to barcoded phage clones displaying SpyTag peptide. Starting from the SpyTag display on p3 or p8 coat proteins yielded constructs with five copies of ScA displayed on p3 (ScA-p3), ∼100 copies of ScA on p8 protein (ScA-p8) and ∼300 copies of PEG-ScA on p8 protein (PEG-ScA-p8). Display constructs of different valencies and chemical modifications on protein (e.g., PEGylation) can be injected into mice and analyzed by deep sequencing of the DNA barcodes associated with phage clones. In these multiplexed studies, we observed a density and protein-dependent clearance rate in vivo. Our observations link the absence of PEGylation and increase in density of the displayed protein with the increased rate of the endocytosis by cells in vivo. In conclusion, we demonstrate that a multivalent display of l-asparaginase on phages could be used to study the circulation life of this protein in vivo, and such an approach opens the possibility to use DNA sequencing to investigate multiplexed libraries of other multisubunit proteins in vivo.
Collapse
Affiliation(s)
- Guilherme M Lima
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil.,Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Revathi Reddy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Karin Torres-Obreque
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
An efficient and safe MUC1-dendritic cell-derived exosome conjugate vaccine elicits potent cellular and humoral immunity and tumor inhibition in vivo. Acta Biomater 2022; 138:491-504. [PMID: 34757230 DOI: 10.1016/j.actbio.2021.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022]
Abstract
Antitumor vaccines are a promising strategy for preventing or treating cancers by eliciting antitumor immune responses and inducing protective immunity against specific antigens expressed on tumor cells. Vaccine formulations that enhance the humoral and cellular immune responses of vaccine candidates would be highly beneficial but are still limited. Here we developed an antitumor vaccine candidate by conjugating a MUC1 glycopeptide antigen to dendritic cell-derived exosomes (Dex). In vivo, the MUC1-Dex construct induced high MUC1-specific IgG antibody titers with strong binding affinities for MUC1-positive tumor cells and promoted cytokine secretion. Moreover, CD8+ T cells from immunized mice exhibited strong cytotoxicity against MUC1-positive tumor cells. Importantly, in both preventative and therapeutic tumor-bearing mouse models, the construct inhibited tumor growth and prolonged survival. Collectively, these results demonstrate that Dex is a promising vaccine carrier that can be used as adjuvant to enhance the immunological efficacy of tumor vaccines. STATEMENT OF SIGNIFICANCE.
Collapse
|
14
|
McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines 2022; 21:453-469. [PMID: 35023430 PMCID: PMC8960355 DOI: 10.1080/14760584.2022.2029415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination can be effective defense against many infectious agents and the corresponding diseases. Discoveries elucidating the mechanisms of the immune system have given hopes to developing vaccines against diseases recalcitrant to current treatment/prevention strategies. One such finding is the ability of immunogenic biological nanoparticles to powerfully boost the immunogenicity of poorer antigens conjugated to them with virus-like particle (VLP)-based vaccines as a key example. VLPs take advantage of the well-defined molecular structures associated with sub-unit vaccines and the immunostimulatory nature of conjugate vaccines. AREAS COVERED In this review, we will discuss how advances in understanding the immune system can inform VLP-based vaccine design and how VLP-based vaccines have uncovered underlying mechanisms in the immune system. EXPERT OPINION As our understanding of mechanisms underlying the immune system increases, that knowledge should inform our vaccine design. Testing of proof-of-concept vaccines in the lab should seek to elucidate the underlying mechanisms of immune responses. The integration of these approaches will allow for VLP-based vaccines to live up to their promise as a powerful plug-and-play platform for next generation vaccine development.
Collapse
Affiliation(s)
- Hunter McFall-Boegeman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
15
|
Trabbic K, Kleski KA, Barchi JJ. A Stable Gold Nanoparticle-Based Vaccine for the Targeted Delivery of Tumor-Associated Glycopeptide Antigens. ACS BIO & MED CHEM AU 2021; 1:31-43. [PMID: 34927166 PMCID: PMC8675876 DOI: 10.1021/acsbiomedchemau.1c00021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a novel antigen delivery system based on polysaccharide-coated gold nanoparticles (AuNPs) targeted to antigen presenting cells (APCs) expressing Dectin-1. AuNPs were synthesized de-novo using yeast-derived β-1,3-glucans (B13G) as the reductant and passivating agent in a microwave-catalyzed procedure yielding highly uniform and serum-stable particles. These were further functionalized with both a peptide and a specific glycosylated form from the tandem repeat sequence of mucin 4 (MUC4), a glycoprotein overexpressed in pancreatic tumors. The glycosylated sequence contained the Thomsen-Friedenreich disaccharide, a pan-carcinoma, Tumor-Associated Carbohydrate Antigen (TACA), which has been a traditional target for antitumor vaccine design. These motifs were prepared with a cathepsin B protease cleavage site (Gly-Phe-Leu-Gly), loaded on the B13G-coated particles and these constructs were examined for Dectin-1 binding, APC processing and presentation in a model in vitro system and for immune responses in mice. We showed that these particles elicit strong in vivo immune responses through the production of both high-titer antibodies and priming of antigen-recognizing T-cells. Further examination showed that a favorable antitumor balance of expressed cytokines was generated, with limited expression of immunosuppressive Il-10. This system is modular in that any range of antigens can be conjugated to our particles and efficiently delivered to APCs expressing Dectin-1.
Collapse
Affiliation(s)
- Kevin
R. Trabbic
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| | - Kristopher A. Kleski
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| | - Joseph J. Barchi
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
16
|
Shahrivarkevishahi A, Luzuriaga MA, Herbert FC, Tumac AC, Brohlin OR, Wijesundara YH, Adlooru AV, Benjamin C, Lee H, Parsamian P, Gadhvi J, De Nisco NJ, Gassensmith JJ. PhotothermalPhage: A Virus-Based Photothermal Therapeutic Agent. J Am Chem Soc 2021; 143:16428-16438. [PMID: 34551259 DOI: 10.1021/jacs.1c05090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multifunctional nanocarriers that mimic the architecture of viruses. They can serve as a safe platform for specific functionalization and immunization, which provides benefits in a wide range of biomedical applications. In this work, a new generation immunophotothermal agent is developed that adjuvants photothermal ablation using a chemically modified VLP called bacteriophage Qβ. The design is based on the conjugation of near-infrared absorbing croconium dyes to lysine residues located on the surface of Qβ, which turns it to a powerful NIR-absorber called PhotothermalPhage. This system can generate more heat upon 808 nm NIR laser radiation than free dye and possesses a photothermal efficiency comparable to gold nanostructures, yet it is biodegradable and acts as an immunoadjuvant combined with the heat it produces. The synergistic combination of thermal ablation with the mild immunogenicity of the VLP leads to effective suppression of primary tumors, reduced lung metastasis, and increased survival time.
Collapse
Affiliation(s)
- Arezoo Shahrivarkevishahi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Alisia C Tumac
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Olivia R Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Abhinay V Adlooru
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Candace Benjamin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Hamilton Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Perouza Parsamian
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jashkaran Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
17
|
Gao Y, Zhao Q, Dong H, Xiao M, Huang X, Wu X. Developing Acid-Responsive Glyco-Nanoplatform Based Vaccines for Enhanced Cytotoxic T-lymphocyte Responses Against Cancer and SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2105059. [PMID: 34512228 PMCID: PMC8420391 DOI: 10.1002/adfm.202105059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Cytotoxic T-lymphocytes (CTLs) are central for eliciting protective immunity against malignancies and infectious diseases. Here, for the first time, partially oxidized acetalated dextran nanoparticles (Ox-AcDEX NPs) with an average diameter of 100 nm are fabricated as a general platform for vaccine delivery. To develop effective anticancer vaccines, Ox-AcDEX NPs are conjugated with a representative CTL peptide epitope (CTLp) from human mucin-1 (MUC1) with the sequence of TSAPDTRPAP (referred to as Mp1) and an immune-enhancing adjuvant R837 (referred to as R) via imine bond formation affording AcDEX-(imine)-Mp1-R NPs. Administration of AcDEX-(imine)-Mp1-R NPs results in robust and long-lasting anti-MUC1 CTL immune responses, which provides mice with superior protection from the tumor. To verify its universality, this nanoplatform is also exploited to deliver epitopes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to prevent coronavirus disease 2019 (COVID-19). By conjugating Ox-AcDEX NPs with the potential CTL epitope of SARS-CoV-2 (referred to as Sp) and R837, AcDEX-(imine)-Sp-R NPs are fabricated for anti-SARS-CoV-2 vaccine candidates. Several epitopes potentially contributing to the induction of potent and protective anti-SARS-CoV-2 CTL responses are examined and discussed. Collectively, these findings shed light on the universal use of Ox-AcDEX NPs to deliver both tumor-associated and virus-associated epitopes.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Qingyu Zhao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Huiling Dong
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Min Xiao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringInstitute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xuanjun Wu
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
- Suzhou Research InstituteShandong UniversitySuzhouJiangsu215123China
| |
Collapse
|
18
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Liu Y, Li M, Zhu H, Jing Z, Yin X, Wang K, Hong Z, Zhao W. Alum colloid encapsulated inside β-glucan particles enhance humoral and CTL immune responses of MUC1 vaccine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
21
|
Wu X, McFall-Boegeman H, Rashidijahanabad Z, Liu K, Pett C, Yu J, Schorlemer M, Ramadan S, Behren S, Westerlind U, Huang X. Synthesis and immunological evaluation of the unnatural β-linked mucin-1 Thomsen-Friedenreich conjugate. Org Biomol Chem 2021; 19:2448-2455. [PMID: 33645601 PMCID: PMC8011953 DOI: 10.1039/d1ob00007a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MUC1 glycopeptides are attractive antigens for anti-cancer vaccine development. One potential drawback in using the native MUC1 glycopeptide for vaccine design is the instability of the O-glycosyl linkage between the glycan and the peptide backbone to glycosidase. To overcome this challenge, a MUC1 glycopeptide mimic has been synthesized with the galactose-galactosamine disaccharide linked with threonine (Thomsen-Friedenreich or Tf antigen) through an unnatural β-glycosyl bond. The resulting MUC1-β-Tf had a much-enhanced stability toward a glycosidase capable of cleaving the glycan from the corresponding MUC1 glycopeptide with the natural α-Tf linkage. The MUC1-β-Tf was subsequently conjugated with a powerful carrier bacteriophage Qβ. The conjugate induced high levels of IgG antibodies in clinically relevant human MUC1 transgenic mice, which cross-recognized not only the natural MUC1-α-Tf glycopeptide but also MUC1 expressing tumor cells, supporting the notion that a simple switch of the stereochemistry of the glycan/peptide linkage can be a strategy for anti-cancer vaccine epitope design for glycopeptides.
Collapse
Affiliation(s)
- Xuanjun Wu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. Int J Mol Sci 2021; 22:ijms22041934. [PMID: 33669238 PMCID: PMC7919822 DOI: 10.3390/ijms22041934] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.
Collapse
|
23
|
Zhao Q, Gao Y, Xiao M, Huang X, Wu X. Synthesis and immunological evaluation of synthetic peptide based anti-SARS-CoV-2 vaccine candidates. Chem Commun (Camb) 2021; 57:1474-1477. [PMID: 33443248 PMCID: PMC8120452 DOI: 10.1039/d0cc08265a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For prevention of the coronavirus disease 2019 caused by the novel coronavirus SARS-CoV-2, an effective vaccine is critical. Herein, several potential peptide epitopes from the spike protein of SARS-CoV-2 have been synthesized and covalently linked with the cross-reactive material (CRM197). Immunization of mice with the resulting conjugates induced high titers of IgG antibodies against the spike protein. Importantly, the post-immune sera effectively neutralized SARS-CoV-2 pseudovirus, suggesting the epitopes identified are protective, and these conjugates are promising leads for anti-SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Qingyu Zhao
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Yanan Gao
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Min Xiao
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. and Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
Dhara D, Baliban SM, Huo CX, Rashidijahanabad Z, Sears KT, Nick ST, Misra AK, Tennant SM, Huang X. Syntheses of Salmonella Paratyphi A Associated Oligosaccharide Antigens and Development towards Anti-Paratyphoid Fever Vaccines. Chemistry 2020; 26:15953-15968. [PMID: 32578281 PMCID: PMC7722144 DOI: 10.1002/chem.202002401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Indexed: 01/08/2023]
Abstract
With the emergence of multidrug resistant Salmonella strains, the development of anti-Salmonella vaccines is an important task. Currently there are no approved vaccines against Salmonella Paratyphi A, the leading cause of paratyphoid fever. To fill this gap, oligosaccharides corresponding to the O-polysaccharide repeating units from the surface of Salmonella Paratyphi A have been synthesized through convergent stereoselective glycosylations. The synthetic glycan antigen was conjugated with a powerful immunogenic carrier system, the bacteriophage Qβ. The resulting construct was able to elicit strong and long-lasting anti-glycan IgG antibody responses, which were highly selective toward Salmonella Paratyphi A associated glycans. The availability of well-defined glycan antigen enabled the determination that one repeating unit of the polysaccharide is sufficient to induce protective antibodies, and the paratose residue and/or the O-acetyl modifications on the backbone are important for recognition by antibodies elicited by a Qβ-tetrasaccharide conjugate. Immune sera provided excellent protection to mice from lethal challenge with Salmonella Paratyphi A, highlighting the potential of the synthetic glycan-based vaccine.
Collapse
Affiliation(s)
- Debashis Dhara
- Division of Molecular Medicine; Bose Institute, P-1/12, C.I.T. Scheme VII M; Kolkata 700054, India
| | - Scott M. Baliban
- Center for Vaccine Development and Global Health; University of Maryland School of Medicine; Baltimore, MD, USA
| | - Chang-Xin Huo
- Department of Chemistry, Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering; Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering; Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Khandra T. Sears
- Center for Vaccine Development and Global Health; University of Maryland School of Medicine; Baltimore, MD, USA
| | - Setare Tahmasebi Nick
- Department of Chemistry, Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering; Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute, P-1/12, C.I.T. Scheme VII M; Kolkata 700054, India
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health; University of Maryland School of Medicine; Baltimore, MD, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering; Michigan State University; 578 South Shaw Lane, East Lansing, MI 48824, USA
- Department of Biomedical Engineering; Michigan State University; East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
26
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
27
|
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020; 108:1-21. [PMID: 32268235 PMCID: PMC7163188 DOI: 10.1016/j.actbio.2020.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. ‘Nanovaccines’ have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. Statement of Significance Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.
Collapse
|
28
|
Tsoras AN, Champion JA. Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications. Annu Rev Chem Biomol Eng 2020; 10:337-359. [PMID: 31173518 DOI: 10.1146/annurev-chembioeng-060718-030347] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Collapse
Affiliation(s)
- Alexandra N Tsoras
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| |
Collapse
|
29
|
Du JJ, Wang CW, Xu WB, Zhang L, Tang YK, Zhou SH, Gao XF, Yang GF, Guo J. Multifunctional Protein Conjugates with Built-in Adjuvant (Adjuvant-Protein-Antigen) as Cancer Vaccines Boost Potent Immune Responses. iScience 2020; 23:100935. [PMID: 32146328 PMCID: PMC7063246 DOI: 10.1016/j.isci.2020.100935] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/22/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Many cancer vaccines are not successful in clinical trials, mainly due to the challenges associated with breaking immune tolerance. Herein, we report a new strategy using an adjuvant-protein-antigen (three-in-one protein conjugates with built-in adjuvant) as an anticancer vaccine, in which both the adjuvant (small-molecule TLR7 agonist) and tumor-associated antigen (mucin 1, MUC1) are covalently conjugated to the same carrier protein (BSA). It is shown that the protein conjugates with built-in adjuvant can increase adjuvant's stimulation, prevent adjuvant's systemic toxicities, facilitate the codelivery of adjuvants and antigens, and enhance humoral and cellular immune responses. The IgG antibody titers elicited by the self-adjuvanting three-in-one protein conjugates were significantly higher than those elicited by the vaccine mixed with TLR7 agonist (more than 15-fold) or other traditional adjuvants. Importantly, the potent immune responses against cancer cells suggest that this new vaccine construct is an effective strategy for the personalized antitumor immunotherapy. Adjuvant-protein-antigen protein conjugates act as new cancer vaccine strategy Built-in adjuvant of TLR7 agonist can reduce toxicities and enhance immune stimulations Three-in-one protein conjugates boost potent immune responses against cancer cells
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chang-Wei Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Lian Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yuan-Kai Tang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
30
|
Goracci M, Pignochino Y, Marchiò S. Phage Display-Based Nanotechnology Applications in Cancer Immunotherapy. Molecules 2020; 25:E843. [PMID: 32075083 PMCID: PMC7071019 DOI: 10.3390/molecules25040843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Phage display is a nanotechnology with limitless potential, first developed in 1985 and still awaiting to reach its peak. Awarded in 2018 with the Nobel Prize for Chemistry, the method allows the isolation of high-affinity ligands for diverse substrates, ranging from recombinant proteins to cells, organs, even whole organisms. Personalized therapeutic approaches, particularly in oncology, depend on the identification of new, unique, and functional targets that phage display, through its various declinations, can certainly provide. A fast-evolving branch in cancer research, immunotherapy is now experiencing a second youth after being overlooked for years; indeed, many reports support the concept of immunotherapy as the only non-surgical cure for cancer, at least in some settings. In this review, we describe literature reports on the application of peptide phage display to cancer immunotherapy. In particular, we discuss three main outcomes of this procedure: (i) phage display-derived peptides that mimic cancer antigens (mimotopes) and (ii) antigen-carrying phage particles, both as prophylactic and/or therapeutic vaccines, and (iii) phage display-derived peptides as small-molecule effectors of immune cell functions. Preclinical studies demonstrate the efficacy and vast potential of these nanosized tools, and their clinical application is on the way.
Collapse
Affiliation(s)
- Martina Goracci
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| | | | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
31
|
Wu X, McKay C, Pett C, Yu J, Schorlemer M, Ramadan S, Lang S, Behren S, Westerlind U, Finn MG, Huang X. Synthesis and Immunological Evaluation of Disaccharide Bearing MUC-1 Glycopeptide Conjugates with Virus-like Particles. ACS Chem Biol 2019; 14:2176-2184. [PMID: 31498587 DOI: 10.1021/acschembio.9b00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucin-1 (MUC1) is a highly attractive antigenic target for anticancer vaccines. Naturally existing MUC1 can contain multiple types of O-linked glycans, including the Thomsen-Friedenreich (Tf) antigen and the Sialyl Thomsen-nouveau (STn) antigen. In order to target these antigens as potential anticancer vaccines, MUC1 glycopeptides SAPDT*RPAP (T* is the glycosylation site) bearing the Tf and the STn antigen, respectively, have been synthesized. The bacteriophage Qβ carrier is a powerful carrier for antigen delivery. The conjugates of MUC1-Tf and -STn glycopeptides with Qβ were utilized to immunize immune-tolerant human MUC1 transgenic (MUC1.Tg) mice, which elicited superior levels of anti-MUC1 IgG antibodies with titers reaching over 2 million units. The IgG antibodies recognized a wide range of MUC1 glycopeptides bearing diverse glycans. Antibodies induced by Qβ-MUC1-Tf showed strongest binding, with MUC1-expressing melanoma B16-MUC1 cells, and effectively killed these cells in vitro. Vaccination with Qβ-MUC1-Tf first followed by tumor challenge in a lung metastasis model showed significant reductions of the number of tumor foci in the lungs of immunized mice as compared to those in control mice. This was the first time that a MUC1-Tf-based vaccine has shown in vivo efficacy in a tumor model. As such, Qβ-MUC1 glycopeptide conjugates have great potential as anticancer vaccines.
Collapse
Affiliation(s)
- Xuanjun Wu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Craig McKay
- School of Chemistry & Biochemistry and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christian Pett
- Leibniz-Institut für Analytische Wissenschaften ISAS e.V., 44227 Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften ISAS e.V., 44227 Dortmund, Germany
| | - Manuel Schorlemer
- Leibniz-Institut für Analytische Wissenschaften ISAS e.V., 44227 Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Sherif Ramadan
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | | | - Sandra Behren
- Leibniz-Institut für Analytische Wissenschaften ISAS e.V., 44227 Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften ISAS e.V., 44227 Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - M. G. Finn
- School of Chemistry & Biochemistry and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
32
|
Yamala AK, Nadella V, Mastai Y, Prakash H, Paik P. P‐LME polymer nanocapsules stimulate naïve macrophages and protect them from oxidative damage during controlled drug release. J Appl Polym Sci 2019. [DOI: 10.1002/app.48363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anil K. Yamala
- School of Engineering Science and TechnologyUniversity of Hyderabad, Prof. CR Rao Road 500046 Hyderabad Telangana India
| | - Vinod Nadella
- Laboratory of Translational Medicine, School of Life SciencesUniversity of Hyderabad, Prof. C. R. Rao Road 500046 Hyderabad Telangana India
| | - Yitzhak Mastai
- Department of Chemistry, Institute of NanotechnologyBar‐Ilan University Ramat‐Gan 52900 Israel
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life SciencesUniversity of Hyderabad, Prof. C. R. Rao Road 500046 Hyderabad Telangana India
- Institute of Virology and ImmunologyAmity University Uttar Pradesh 201313 India
| | - Pradip Paik
- School of Engineering Science and TechnologyUniversity of Hyderabad, Prof. CR Rao Road 500046 Hyderabad Telangana India
- School of Biomedical EngineeringIndian Institute of Technology, BHU Varanasi 221005 India
| |
Collapse
|
33
|
Li M, Wang Z, Yan B, Yin X, Zhao Y, Yu F, Meng M, Liu Y, Zhao W. Design of a MUC1-based tricomponent vaccine adjuvanted with FSL-1 for cancer immunotherapy. MEDCHEMCOMM 2019; 10:2073-2077. [PMID: 32133105 DOI: 10.1039/c9md00254e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
MUC1 is an attractive target for cancer vaccines as a result of its over-expression and aberrant glycosylation pattern on many tumor cells. However, the low immunogenicity of MUC1 and immune tolerance have limited its application. Herein, we designed MUC1-based tricomponent antitumor vaccines adjuvanted with fibroblast stimulating lipopeptide 1 (FSL-1). Immunological results indicate that the glycosylated tricomponent vaccine candidate has elicited both humoral and cellular immune responses. The induced antibodies could effectively bind to MCF-7. Furthermore, the vaccine exhibited an obvious reduction in tumour burden.
Collapse
Affiliation(s)
- Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Bocheng Yan
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Xiaona Yin
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Yue Zhao
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Fan Yu
- College of Life Sciences , Nankai University , Nankai District, 94 Weijin Road , Tianjin , 300071 , P. R. China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin , 300350 , P. R. China . ;
| |
Collapse
|
34
|
Du JJ, Zou SY, Chen XZ, Xu WB, Wang CW, Zhang L, Tang YK, Zhou SH, Wang J, Yin XG, Gao XF, Liu Z, Guo J. Liposomal Antitumor Vaccines Targeting Mucin 1 Elicit a Lipid-Dependent Immunodominant Response. Chem Asian J 2019; 14:2116-2121. [PMID: 31042017 DOI: 10.1002/asia.201900448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Indexed: 12/30/2022]
Abstract
The tumor-associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti-MUC1 immunodominant responses. Herein, we prepared synthetic anti-MUC1 vaccines in which the hydrophilic MUC1 antigen was N-terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam-MUC1 or Pam2 -MUC1). These amphiphilic lipid-tailed MUC1 antigens were self-assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid-conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti-MUC1 IgG antibody titers induced by the Pam2 -MUC1 vaccine were more than 30- and 190-fold higher than those induced by the Pam-MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3 CSK4 as an adjuvant also induced conjugated lipid-dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3 CSK4 adjuvant. Therefore, the non-covalent assembly of the amphiphilic lipo-MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti-MUC1 cancer vaccines.
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shi-Yao Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chang-Wei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yuan-Kai Tang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
35
|
Huo CX, Dhara D, Baliban SM, Tahmasebi Nick S, Tan Z, Simon R, Misra AK, Huang X. Synthetic and immunological studies of Salmonella Enteritidis O-antigen tetrasaccharides as potential anti-Salmonella vaccines. Chem Commun (Camb) 2019; 55:4519-4522. [PMID: 30924468 PMCID: PMC6525565 DOI: 10.1039/c8cc08622b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthetic carbohydrate based potential anti-Salmonella Enteritidis vaccine has been developed by conjugating a synthetic tetrasaccharide antigen with bacteriophage Qβ. High levels of specific and long lasting anti-glycan IgG antibodies were induced by the conjugate, which completely protected mice from lethal bacterial challenges in a passive transfer model.
Collapse
Affiliation(s)
- Chang-Xin Huo
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu X, Yin Z, McKay C, Pett C, Yu J, Schorlemer M, Gohl T, Sungsuwan S, Ramadan S, Baniel C, Allmon A, Das R, Westerlind U, Finn MG, Huang X. Protective Epitope Discovery and Design of MUC1-based Vaccine for Effective Tumor Protections in Immunotolerant Mice. J Am Chem Soc 2018; 140:16596-16609. [PMID: 30398345 DOI: 10.1021/jacs.8b08473] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mucin-1 (MUC1) is a highly attractive antigen for the development of anticancer vaccines. However, in human clinical trials of multiple MUC1 based vaccines, despite the generation of anti-MUC1 antibodies, the antibodies often failed to exhibit much binding to tumor presumably due to the challenges in inducing protective immune responses in the immunotolerant environment. To design effective MUC1 based vaccines functioning in immunotolerant hosts, vaccine constructs were first synthesized by covalently linking the powerful bacteriophage Qβ carrier with MUC1 glycopeptides containing 20-22 amino acid residues covering one full length of the tandem repeat region of MUC1. However, IgG antibodies elicited by these first generation constructs in tolerant human MUC1 transgenic (Tg) mice did not bind tumor cells strongly. To overcome this, a peptide array has been synthesized. By profiling binding selectivities of antibodies, the long MUC1 glycopeptide was found to contain immunodominant but nonprotective epitopes. Critical insights were obtained into the identity of the key protective epitope. Redesign of the vaccine focusing on the protective epitope led to a new Qβ-MUC1 construct, which was capable of inducing higher levels of anti-MUC1 IgG antibodies in MUC1.Tg mice to react strongly with and kill a wide range of tumor cells compared to the construct containing the gold standard protein carrier, i.e., keyhole limpet hemocyanin. Vaccination with this new Qβ-MUC1 conjugate led to significant protection of MUC1.Tg mice in both metastatic and solid tumor models. The antibodies exhibited remarkable selectivities toward human breast cancer tissues, suggesting its high translational potential.
Collapse
Affiliation(s)
| | | | - Craig McKay
- School of Chemistry & Biochemistry and School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Christian Pett
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany.,Department of Chemistry , Umeå University , 901 87 Umeå , Sweden
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany
| | - Manuel Schorlemer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany
| | - Trevor Gohl
- Department of Physiology , Michigan State University , East Lansing , Michigan 48824 , United States
| | | | - Sherif Ramadan
- Chemistry Department, Faculty of Science , Benha University , Benha , Qaliobiya 13518 , Egypt
| | | | | | - Rupali Das
- Department of Physiology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany.,Department of Chemistry , Umeå University , 901 87 Umeå , Sweden
| | - M G Finn
- School of Chemistry & Biochemistry and School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | | |
Collapse
|