1
|
Jalali E, Wang F, Overbay BR, Miller MD, Shaaban KA, Ponomareva LV, Ye Q, Saghaeiannejad-Esfahani H, Bhardwaj M, Steele AD, Teijaro CN, Shen B, Van Lanen SG, She QB, Voss SR, Phillips GN, Thorson JS. Biochemical and Structural Studies of the Carminomycin 4- O-Methyltransferase DnrK. JOURNAL OF NATURAL PRODUCTS 2024; 87:798-809. [PMID: 38412432 PMCID: PMC11623920 DOI: 10.1021/acs.jnatprod.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.
Collapse
Affiliation(s)
| | - Fengbin Wang
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
| | | | - Mitchell D Miller
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
| | | | | | - Qing Ye
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | | | | | | | | | | - Qing-Bai She
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - S Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40536, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | | |
Collapse
|
2
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
3
|
Hulst MB, Grocholski T, Neefjes JJC, van Wezel GP, Metsä-Ketelä M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep 2021; 39:814-841. [PMID: 34951423 DOI: 10.1039/d1np00059d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: January 1995 to June 2021Anthracyclines are glycosylated microbial natural products that harbour potent antiproliferative activities. Doxorubicin has been widely used as an anticancer agent in the clinic for several decades, but its use is restricted due to severe side-effects such as cardiotoxicity. Recent studies into the mode-of-action of anthracyclines have revealed that effective cardiotoxicity-free anthracyclines can be generated by focusing on histone eviction activity, instead of canonical topoisomerase II poisoning leading to double strand breaks in DNA. These developments have coincided with an increased understanding of the biosynthesis of anthracyclines, which has allowed generation of novel compound libraries by metabolic engineering and combinatorial biosynthesis. Coupled to the continued discovery of new congeners from rare Actinobacteria, a better understanding of the biology of Streptomyces and improved production methodologies, the stage is set for the development of novel anthracyclines that can finally surpass doxorubicin at the forefront of cancer chemotherapy.
Collapse
Affiliation(s)
- Mandy B Hulst
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Thadee Grocholski
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jacques J C Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
4
|
Na L, Li R, Chen X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2021. [PMID: 33310623 DOI: 10.1186/10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
Affiliation(s)
- Lan Na
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2020; 61:81-95. [PMID: 33310623 DOI: 10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
|
6
|
Liu Z, Zhao S, Sun X, Mao X. Biological synthesis and anti-HeLa cells effect of glycosylated bafilomycins. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Nji Wandi B, Siitonen V, Palmu K, Metsä-Ketelä M. The Rieske Oxygenase SnoT Catalyzes 2''-Hydroxylation of l-Rhodosamine in Nogalamycin Biosynthesis. Chembiochem 2020; 21:3062-3066. [PMID: 32557994 DOI: 10.1002/cbic.202000229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Indexed: 02/02/2023]
Abstract
Nogalamycin is an anthracycline anti-cancer agent that intercalates into the DNA double helix. The binding is facilitated by two carbohydrate units, l-nogalose and l-nogalamine, that interact with the minor and major grooves of DNA, respectively. However, recent investigations have shown that nogalamycin biosynthesis proceeds through the attachment of l-rhodosamine (2''-deoxy-4''-epi-l-nogalamine) to the aglycone. Herein, we demonstrate that the Rieske enzyme SnoT catalyzes 2''-hydroxylation of l-rhodosamine as an initial post-glycosylation step. Furthermore, we establish that the reaction order continues with 2-5'' carbocyclization and 4'' epimerization by the non-heme iron and 2-oxoglutarate-dependent enzymes SnoK and SnoN, respectively. These late-stage tailoring steps are important for the bioactivity of nogalamycin due to involvement of the 2''- and 4''-hydroxy groups of l-nogalamine in hydrogen bonding interactions with DNA.
Collapse
Affiliation(s)
- Benjamin Nji Wandi
- Department of Biochemistry, University of Turku, Vatselankatu, 2, 20014, Turku, Finland
| | - Vilja Siitonen
- Department of Biochemistry, University of Turku, Vatselankatu, 2, 20014, Turku, Finland
| | - Kaisa Palmu
- Department of Biochemistry, University of Turku, Vatselankatu, 2, 20014, Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Vatselankatu, 2, 20014, Turku, Finland
| |
Collapse
|
8
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
9
|
Li H, Zhu W, Liu Y. Mechanism of Uncoupled Carbocyclization and Epimerization Catalyzed by Two Non-Heme Iron/α-Ketoglutarate Dependent Enzymes. J Chem Inf Model 2019; 59:5086-5098. [PMID: 31790238 DOI: 10.1021/acs.jcim.9b00837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The non-heme iron/α-ketoglutarate dependent enzymes SnoK and SnoN from Streptomyces nogalater are involved in the biosynthesis of anthracycline nogalamycin. Although they have similar active sites, SnoK is responsible for carbocyclization whereas SnoN solely catalyzes the hydroxyl epimerization. Herein, we performed docking, molecular simulations, and a series of combined quantum mechanics and molecular mechanics (QM/MM) calculations to illuminate the mechanisms of two enzymes. The catalytic reactions of two enzymes occur on the quintet state surface. For SnoK, the whole reaction includes two separated hydrogen-abstraction steps and one radical addition, and the latter step is calculated to be rate limiting with an energy barrier of 21.7 kcal/mol. Residue D106 is confirmed to participate in the construction of the hydrogen bond network, which plays a crucial role in positioning the bulky substrate in a specific orientation. Moreover, it is found that SnoN is only responsible for the hydrogen abstraction of the intermediate, and no residue was suggested to be suitable for donating a hydrogen atom to the substrate radical, which further confirms the suggestion based on experiments that either a cellular reductant or another enzyme protein could donate a hydrogen atom to the substrate. Our docking results coincide with the previous structural study that the different roles of two enzymes are achieved by minor changes in the alignment of the substrates in front of the reactive ferryl-oxo species. This work highlights the reaction mechanisms catalyzed by SnoK and SnoN, which is helpful for engineering the enzymes for the biosynthesis of anthracycline nogalamycin.
Collapse
Affiliation(s)
- Hong Li
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Wenyou Zhu
- College of Chemistry and Chemical Engineering , Xuzhou Institute of Technology , Xuzhou , Jiangsu 221111 , China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| |
Collapse
|
10
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|