1
|
Guo X, Cheung YC, Li C, Liu H, Li P, Chen S, Li X. Investigation on the substrate specificity and N-substitution tolerance of PseF in catalytic transformation of pseudaminic acids to CMP-Pse derivatives. Chem Sci 2024; 15:5950-5956. [PMID: 38665540 PMCID: PMC11040635 DOI: 10.1039/d4sc00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudaminic acid (Pse) belongs to a class of bacterial non-2-ulosonic acids, and has been implicated in bacterial infection and immune evasion. Various Pse structures with diverse N-substitutions have been identified in pathogenic bacterial strains like Pseudomonas aeruginosa, Campylobacter jejuni, and Acinetobacter baumannii. In this study, we successfully synthesized three new Pse species, including Pse5Ac7Fo, Pse5Ac7(3RHb) and Pse7Fo5(3RHb) using chemical methods. Furthermore, we investigated the substrate specificity of cytidine 5'-monophosphate (CMP)-Pse synthetase (PseF), resulting in the production of N-modified CMP-Pse derivatives (CMP-Pses). It was found that PseF was promiscuous with the Pse substrate and could tolerate different modifications at the two nitrogen atoms. This study provides valuable insights into the incorporation of variable N-substitutions in the Pse biosynthetic pathway.
Collapse
Affiliation(s)
- Xing Guo
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong Province P. R. China
| | - Yan Chu Cheung
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Pengfei Li
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong Province P. R. China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Ocean University China Qingdao 266237 People's Republic of China
| |
Collapse
|
2
|
Kaniusaite M, Goode RJA, Tailhades J, Schittenhelm RB, Cryle MJ. Exploring modular reengineering strategies to redesign the teicoplanin non-ribosomal peptide synthetase. Chem Sci 2020; 11:9443-9458. [PMID: 34094211 PMCID: PMC8162109 DOI: 10.1039/d0sc03483e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
Non-ribosomal peptide synthesis is an important biosynthesis pathway in secondary metabolism. In this study we have investigated modularisation and redesign strategies for the glycopeptide antibiotic teicoplanin. Using the relocation or exchange of domains within the NRPS modules, we have identified how to initiate peptide biosynthesis and explored the requirements for the functional reengineering of both the condensation/adenylation domain and epimerisation/condensation domain interfaces. We have also demonstrated strategies that ensure communication between isolated NRPS modules, leading to new peptide assembly pathways. This provides important insights into NRPS reengineering of glycopeptide antibiotic biosynthesis and has broad implications for the redesign of other NRPS systems.
Collapse
Affiliation(s)
- Milda Kaniusaite
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Robert J A Goode
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- Monash Proteomics and Metabolomics Facility, Monash University Clayton Victoria 3800 Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Ralf B Schittenhelm
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- Monash Proteomics and Metabolomics Facility, Monash University Clayton Victoria 3800 Australia
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
3
|
Kaniusaite M, Tailhades J, Kittilä T, Fage CD, Goode RJA, Schittenhelm RB, Cryle MJ. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. FEBS J 2020; 288:507-529. [PMID: 32359003 DOI: 10.1111/febs.15350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross-linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)-stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1-4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS-mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)-amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems.
Collapse
Affiliation(s)
- Milda Kaniusaite
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| | - Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | - Robert J A Goode
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Flack EKP, Chidwick HS, Best M, Thomas GH, Fascione MA. Synthetic Approaches for Accessing Pseudaminic Acid (Pse) Bacterial Glycans. Chembiochem 2020; 21:1397-1407. [PMID: 31944494 DOI: 10.1002/cbic.202000019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Pseudaminic acids (Pses) are a group of non-mammalian nonulosonic acids (nulOs) that have been shown to be an important virulence factor for a number of pathogenic bacteria, including emerging multidrug-resistant ESKAPE pathogens. Despite their discovery over 30 years ago, relatively little is known about the biological significance of Pse glycans compared with their sialic acid analogues, primarily due to a lack of access to the synthetically challenging Pse architecture. Recently, however, the Pse backbone has been subjected to increasing synthetic exploration by carbohydrate (bio)chemists, and the total synthesis of complex Pse glycans achieved with inspiration from the biosynthesis and subsequent detailed study of chemical glycosylation by using Pse donors. Herein, context is provided for these efforts by summarising recent synthetic approaches pioneered for accessing Pse glycans, which are set to open up this underexplored area of glycoscience to the wider scientific community.
Collapse
Affiliation(s)
- Emily K P Flack
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Harriet S Chidwick
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Matthew Best
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| |
Collapse
|
5
|
Chidwick HS, Fascione MA. Mechanistic and structural studies into the biosynthesis of the bacterial sugar pseudaminic acid (Pse5Ac7Ac). Org Biomol Chem 2020; 18:799-809. [PMID: 31913385 DOI: 10.1039/c9ob02433f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The non-mammalian nonulosonic acid sugar pseudaminic acid (Pse) is present on the surface of a number of human pathogens including Campylobacter jejuni and Helicobacter pylori and other bacteria such as multidrug resistant Acinetobacter baumannii. It is likely important for evasion of the host immune sysyem, and also plays a role in bacterial motility through flagellin glycosylation. Herein we review the mechanistic and structural characterisation of the enzymes responsible for the biosynthesis of the Pse parent structure, Pse5Ac7Ac in bacteria.
Collapse
|
6
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7060176] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Marine habitats are a rich source of molecules of biological interest. In particular, marine bacteria attract attention with their ability to synthesize structurally diverse classes of bioactive secondary metabolites with high biotechnological potential. The last decades were marked by numerous discoveries of biomolecules of bacterial symbionts, which have long been considered metabolites of marine animals. Many compounds isolated from marine bacteria are unique in their structure and biological activity. Their study has made a significant contribution to the discovery and production of new natural antimicrobial agents. Identifying the mechanisms and potential of this type of metabolite production in marine bacteria has become one of the noteworthy trends in modern biotechnology. This path has become not only one of the most promising approaches to the development of new antibiotics, but also a potential target for controlling the viability of pathogenic bacteria.
Collapse
|
8
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|