1
|
Bellur A, Das S, Jayaraman V, Behera S, Suryavanshi A, Balasubramanian S, Balaram P, Jindal G, Balaram H. Revisiting the Burden Borne by Fumarase: Enzymatic Hydration of an Olefin. Biochemistry 2023; 62:476-493. [PMID: 36595439 DOI: 10.1021/acs.biochem.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fumarate hydratase (FH) is a remarkable catalyst that decreases the free energy of the catalyzed reaction by 30 kcal mol-1, much larger than most exceptional enzymes with extraordinary catalytic rates. Two classes of FH are observed in nature: class-I and class-II, which have different folds, yet catalyze the same reversible hydration/dehydration reaction of the dicarboxylic acids fumarate/malate, with equal efficiencies. Using class-I FH from the hyperthermophilic archaeon Methanocaldococcus jannaschii (Mj) as a model along with comparative analysis with the only other available class-I FH structure from Leishmania major (Lm), we provide insights into the molecular mechanism of catalysis in this class of enzymes. The structure of MjFH apo-protein has been determined, revealing that large intersubunit rearrangements occur across apo- and holo-protein forms, with a largely preorganized active site for substrate binding. Site-directed mutagenesis of active site residues, kinetic analysis, and computational studies, including density functional theory (DFT) and natural population analysis, together show that residues interacting with the carboxylate group of the substrate play a pivotal role in catalysis. Our study establishes that an electrostatic network at the active site of class-I FH polarizes the substrate fumarate through interactions with its carboxylate groups, thereby permitting an easier addition of a water molecule across the olefinic bond. We propose a mechanism of catalysis in FH that occurs through transition-state stabilization involving the distortion of the electronic structure of the substrate olefinic bond mediated by the charge polarization of the bound substrate at the enzyme active site.
Collapse
Affiliation(s)
- Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Soumik Das
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Vijay Jayaraman
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Arpitha Suryavanshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
2
|
Davoodi A, Eslami S, Fakhar M, Aazadbakht M, Montazeri M, Khoshvishkaie E, Keighobadi M. Aurothiomalate-Based Drugs as Potentially Novel Agents Against Leishmania major: A Mini Review. Acta Parasitol 2022; 67:640-647. [PMID: 35380401 DOI: 10.1007/s11686-022-00536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/10/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Leishmaniasis is a major public health problem worldwide in many parts of the world. Current anti-leishmanial drugs have only limited clinical efficacy. Aurothiomalate derivatives are useful for treating rheumatoid arthritis, but have emerged as a promising therapeutic candidate for leishmaniasis. This paper gives a review of the literature about the usefulness of aurothiomalate derivatives against leishmaniasis. METHODS In this study, we reviewed the proposed mechanisms of action of aurothiomalate and related compounds on the metabolism of L. major and collected data by searching relevant articles. RESULTS Aurothiomalate-based drugs could be effective against leishmaniasis through two direct and indirect mechanisms: first, cytotoxic effects on parasites via thiomalate's false substrate role in the citric acid cycle against malate; and second, immunosuppressive and anti-inflammatory effects of aurothiomalate derivatives with prostaglandin production inhibitory effects. CONCLUSIONS The current study documented that aurothiomalate-based drugs could be effective against leishmaniasis through two direct and indirect mechanisms of action. Gold thiomalate as a promising hit should be evaluated against L. major in vitro and in vivo conditions in the future.
Collapse
Affiliation(s)
- Ali Davoodi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Eslami
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Mazandaran University of Medical Sciences, Farah Abad, 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Mazandaran University of Medical Sciences, Farah Abad, 48471-91971, Sari, Iran.
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Hydatid Cyst, Mazandaran Branch, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Aazadbakht
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahbobeh Montazeri
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Mazandaran University of Medical Sciences, Farah Abad, 48471-91971, Sari, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Hydatid Cyst, Mazandaran Branch, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elnaz Khoshvishkaie
- Pharmaceutical Cares Department, Ayatollah Khamenei Hospital, Mazandaran University of Medical Sciences, Abbas Abad, Iran
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Mazandaran University of Medical Sciences, Farah Abad, 48471-91971, Sari, Iran.
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Hydatid Cyst, Mazandaran Branch, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Cardoso IA, de Souza AKL, Burgess AMG, Chalmers IW, Hoffmann KF, Nonato MC. Characterization of class II fumarase from Schistosoma mansoni provides the molecular basis for selective inhibition. Int J Biol Macromol 2021; 175:406-421. [PMID: 33549669 DOI: 10.1016/j.ijbiomac.2021.01.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is a neglected tropical disease that affects more than 250 million people worldwide. The only drug available for its treatment undergoes first-pass hepatic metabolism and is not capable of preventing reinfection, which makes the search of new therapies urgently needed. Due to the essential role of fumarases in metabolism, these enzymes represent potential targets for developing novel schistosomiasis treatments. Here, we evaluate the expression profiles for class I and class II fumarases from Schistosoma mansoni (SmFHI and SmFHII, respectively), and report the complete characterization of SmFHII. The first SmFHII structure in complex with L-malate was determined at 1.85 Å resolution. The significant thermoshift observed for SmFHII in the presence of identified ligands makes the differential scanning fluorimetry an adequate technique for ligand screening. A complete kinetic characterization of SmFHII was performed, and comparison with the human fumarase (HsFH) revealed differences regarding the turnover number (kcat). Structural characterization allowed us to identify differences between SmFHII and HsFH that could be explored to design new selective inhibitors. This work represents the very first step towards validate the fumarases as drug targets to treat schistosomiasis. Our results provide the structural basis to rational search for selective ligands.
Collapse
Affiliation(s)
- Iara Aimê Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Kusumota Luiz de Souza
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Adam Muslem George Burgess
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Iain Wyllie Chalmers
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Karl Francis Hoffmann
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Feliciano PR, Drennan CL. Structural and Biochemical Investigations of the [4Fe-4S] Cluster-Containing Fumarate Hydratase from Leishmania major. Biochemistry 2019; 58:5011-5021. [PMID: 31743022 PMCID: PMC7065722 DOI: 10.1021/acs.biochem.9b00923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Class I fumarate hydratases (FHs) are central metabolic
enzymes
that use a [4Fe-4S] cluster to catalyze the reversible conversion
of fumarate to S-malate. The parasite Leishmania
major, which is responsible for leishmaniasis, expresses
two class I FH isoforms: mitochondrial LmFH-1 and cytosolic LmFH-2.
In this study, we present kinetic characterizations of both LmFH isoforms,
present 13 crystal structures of LmFH-2 variants, and employ site-directed
mutagenesis to investigate the enzyme’s mechanism. Our kinetic
data confirm that both LmFH-1 and LmFH-2 are susceptible to oxygen-dependent
inhibition, with data from crystallography and electron paramagnetic
resonance spectroscopy showing that oxygen exposure converts an active
[4Fe-4S] cluster to an inactive [3Fe-4S] cluster. Our anaerobically
conducted kinetic studies reveal a preference for fumarate over S-malate. Our data further reveal that single alanine substitutions
of T467, R421, R471, D135, and H334 decrease kcat values 9–16000-fold without substantially affecting Km values, suggesting that these residues function
in catalytic roles. Crystal structures of LmFH-2 variants are consistent
with this idea, showing similar bidentate binding to the unique iron
of the [4Fe-4S] cluster for substrate S-malate as
observed in wild type FH. We further present LmFH-2 structures with
substrate fumarate and weak inhibitors succinate and malonate bound
in the active site and the first structure of an LmFH that is substrate-free
and inhibitor-free, the latter showing increased mobility in the C-terminal
domain. Collectively, these data provide insight into the molecular
basis for the reaction catalyzed by LmFHs, enzymes that are potential
drug targets against leishmaniasis.
Collapse
Affiliation(s)
- Patricia R Feliciano
- Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|