1
|
Young K, Yamane S, GharehTapeh EA, Kasamatsu S, Ihara H, Hasegawa U. Manganese Porphyrin-Containing Polymeric Micelles: A Novel Approach for Intracellular Catalytic Formation of Per/Polysulfide Species from a Hydrogen Sulfide Donor. Adv Healthc Mater 2024; 13:e2302429. [PMID: 37916994 PMCID: PMC11468854 DOI: 10.1002/adhm.202302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Per/polysulfide species that are generated from endogenously produced hydrogen sulfide have critical regulatory roles in a wide range of cellular processes. However, the lack of delivery systems that enable controlled and sustained release of these unstable species in biological systems hinders the advancement of sulfide biology research, as well as the translation of knowledge to therapeutic applications. Here, a novel approach is developed to generate per/polysulfide species in cells by combining an H2 S donor and manganese porphyrin-containing polymeric micelles (MnPMCs) that catalyze oxidization of H2 S to per/polysulfide species. MnPMCs serve as a catalyst for H2 S oxidation in aerobic phosphate buffer. HPLC-MS/MS analysis reveals that H2 S oxidation by MnPMCs in the presence of glutathione results in the formation of glutathione-SnH (n = 2 and 3). Furthermore, co-treatment of human umbilical vein endothelial cells with the H2 S donor anethole dithiolethione and MnPMCs increases intracellular per/polysulfide levels and induces a proangiogenic response. Co-delivery of MnPMCs and an H2 S donor is a promising approach for controlled delivery of polysulfides for therapeutic applications.
Collapse
Affiliation(s)
- Kemper Young
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
| | - Setsuko Yamane
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
- Department of Chemistry & BiochemistryNational Institute of Technology, Numazu College3600 OokaNumazuShizuoka410‐8501Japan
| | - Elmira Abbasi GharehTapeh
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
| | - Shingo Kasamatsu
- Department of Biological ChemistryOsaka Metropolitan University1‐1 Gakuen‐choSakaiOsaka599‐8531Japan
| | - Hideshi Ihara
- Department of Biological ChemistryOsaka Metropolitan University1‐1 Gakuen‐choSakaiOsaka599‐8531Japan
| | - Urara Hasegawa
- Department of Materials Science and EngineeringThe Pennsylvania State UniversitySteidle BuildingUniversity ParkPA1680USA
| |
Collapse
|
2
|
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, Ros-Santaella JL. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H 2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res 2023; 19:52. [PMID: 36797726 PMCID: PMC9933379 DOI: 10.1186/s12917-023-03593-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system. RESULTS Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival. CONCLUSIONS The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Abigail F. Chinn
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Martin Kadlec
- grid.15866.3c0000 0001 2238 631XDepartment of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Francisco Alberto García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pavel Novy
- grid.15866.3c0000 0001 2238 631XDepartment of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - John B. Matson
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
3
|
van der Vlies AJ, Ghasemi M, Adair BM, Adair JH, Gomez ED, Hasegawa U. Reactive Oxygen Species-Triggered Hydrogen Sulfide Release and Cancer-Selective Antiproliferative Effect of Anethole Dithiolethione-Containing Polymeric Micelles. Adv Healthc Mater 2023; 12:e2201836. [PMID: 36495554 PMCID: PMC10125727 DOI: 10.1002/adhm.202201836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2 S) is a gaseous signaling molecule in the human body and has attracted attention in cancer therapy due to its regulatory roles in cancer cell proliferation and migration. Accumulating evidence suggests that continuous delivery of H2 S to cancer cells for extended periods of time suppresses cancer progression. However, one major challenge in therapeutic applications of H2 S is its controlled delivery. To solve this problem, polymeric micelles are developed containing H2 S donating-anethole dithiolethione (ADT) groups, with H2 S release profiles optimal for suppressing cancer cell proliferation. The micelles release H2 S upon oxidation by reactive oxygens species (ROS) that are present inside the cells. The H2 S release profiles can be controlled by changing the polymer design. Furthermore, the micelles that show a moderate H2 S release rate exert the strongest anti-proliferative effect in human colon cancer cells in in vitro assays as well as the chick chorioallantoic membrane cancer model, while the micelles do not affect proliferation of human umbilical vein endothelial cells. This study shows the importance of fine-tuning H2 S release profiles using a micelle approach for realizing the full therapeutic potential of H2 S in cancer treatment.
Collapse
Affiliation(s)
- André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Masoud Ghasemi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernadette M Adair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - James H Adair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Pharmacology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Enrique D Gomez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Bhattacherjee D, Raina K, Mandal TK, Thummer RP, Bhabak KP. Targeting Wnt/β-catenin signaling pathway in triple-negative breast cancer by benzylic organotrisulfides: Contribution of the released hydrogen sulfide towards potent anti-cancer activity. Free Radic Biol Med 2022; 191:82-96. [PMID: 36038037 DOI: 10.1016/j.freeradbiomed.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
The potent anti-cancer activity of naturally occurring organopolysulfides has attracted wide research attention over the last two decades. Sustained donation of hydrogen sulfide (H2S) from organopolysulfides is found to be beneficial for the treatment of several organ-specific cancers. In the present study, for the first time, the mechanism of action for the potent anti-cancer activity of bis(3,5-dimethoxybenzyl) trisulfide 4 against highly aggressive triple-negative breast cancer cells (MDA-MB-231) is described. Preliminary in vitro studies revealed potent anti-proliferative activity of the trisulfide 4 against triple-negative breast cancer cells with an IC50 value of 1.0 μM. Mechanistic studies reveal that the compound exhibited anti-cancer activity, primarily by targeting and suppressing the Wnt/β-catenin signaling pathway. The inactivation of the β-catenin level was associated with the cell cycle arrest in the G2/M phase and the significant down-regulation of downstream signaling genes such as Cyclin D1 and c-Myc expression. Several control experiments with analogous organosulfur compounds and the key enzyme inhibitors reveal that the presence of a trisulfide unit in the compound is crucial for the desired inactivation of β-catenin expression, which is promoted by GSK-3β-induced phosphorylation of β-catenin and its proteasomal degradation. Moreover, the trisulfide unit or the released H2S induced down-regulation of the p53 expression with the possible S-sulfhydration process led to p53-independent up-regulation of p21 expression. Therefore, the key results of this study highlighting the potency of synthetic benzylic organotrisulfide and the released H2S towards the growth inhibition of triple-negative breast cancer via Wnt/β-catenin signaling pathway would certainly be helpful for further studies and developing small-molecule anti-cancer therapeutics in future.
Collapse
Affiliation(s)
- Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Tapas K Mandal
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajkumar P Thummer
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Smith HM, Pluth MD. Thiol-Activated 1,2,4-Thiadiazolidin-3,5-diones Release Hydrogen Sulfide through a Carbonyl-Sulfide-Dependent Pathway. J Org Chem 2022; 87:12441-12446. [PMID: 36070356 PMCID: PMC9893878 DOI: 10.1021/acs.joc.2c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent efforts have expanded the development of small molecule donors that release the important biological signaling molecule hydrogen sulfide (H2S). Previous work on 1,2,4-thiadiazolidin-3,5-diones (TDZNs) reported that these compounds release H2S directly, albeit inefficiently. However, TDZNs showed promising efficacy in H2S-mediated relaxation in ex vivo aortic ring relaxation models. Here, we show that TDZNs release carbonyl sulfide (COS) efficiently, which can be converted to H2S by the enzyme carbonic anhydrase (CA) rather than releasing H2S directly as previously reported.
Collapse
Affiliation(s)
- Haley M. Smith
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
6
|
Yao T, van Nunen T, Rivero R, Powell C, Carrazzone R, Kessels L, Wieringa PA, Hafeez S, Wolfs TG, Moroni L, Matson JB, Baker MB. Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28628-28638. [PMID: 35715217 PMCID: PMC9247975 DOI: 10.1021/acsami.2c06686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Tissue-engineered constructs are currently limited by the lack of vascularization necessary for the survival and integration of implanted tissues. Hydrogen sulfide (H2S), an endogenous signaling gas (gasotransmitter), has been recently reported as a promising alternative to growth factors to mediate and promote angiogenesis in low concentrations. Yet, sustained delivery of H2S remains a challenge. Herein, we have developed angiogenic scaffolds by covalent attachment of an H2S donor to a polycaprolactone (PCL) electrospun scaffold. These scaffolds were engineered to include azide functional groups (on 1, 5, or 10% of the PCL end groups) and were modified using a straightforward click reaction with an alkyne-functionalized N-thiocarboxyanhydride (alkynyl-NTA). This created H2S-releasing scaffolds that rely on NTA ring-opening in water followed by conversion of released carbonyl sulfide into H2S. These functionalized scaffolds showed dose-dependent release of H2S based on the amount of NTA functionality within the scaffold. The NTA-functionalized fibrous scaffolds supported human umbilical vein endothelial cell (HUVEC) proliferation, formed more confluent endothelial monolayers, and facilitated the formation of tight cell-cell junctions to a greater extent than unfunctionalized scaffolds. Covalent conjugation of H2S donors to scaffolds not only promotes HUVEC proliferation in vitro, but also increases neovascularization in ovo, as observed in the chick chorioallantoic membrane assay. NTA-functionalized scaffolds provide localized control over vascularization through the sustained delivery of a powerful endogenous angiogenic agent, which should be further explored to promote angiogenesis in tissue engineering.
Collapse
Affiliation(s)
- Tianyu Yao
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
- Shaanxi
Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D
Center of Biomaterials and Fermentation Engineering, School of Chemical
Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi, 710069, China
| | - Teun van Nunen
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Rebeca Rivero
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Chadwick Powell
- Chemistry
Department, Macromolecules Innovation Institute, Virginia Tech, 1075
Life Science Circle, Blacksburg, Virginia 24061, United
States
| | - Ryan Carrazzone
- Chemistry
Department, Macromolecules Innovation Institute, Virginia Tech, 1075
Life Science Circle, Blacksburg, Virginia 24061, United
States
| | - Lilian Kessels
- Department
of Pediatrics, Universiteitssingel 50, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Paul Andrew Wieringa
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Shahzad Hafeez
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Tim G.A.M. Wolfs
- Department
of Pediatrics, Universiteitssingel 50, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Lorenzo Moroni
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - John B. Matson
- Chemistry
Department, Macromolecules Innovation Institute, Virginia Tech, 1075
Life Science Circle, Blacksburg, Virginia 24061, United
States
| | - Matthew B. Baker
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
7
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
8
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Alaboalirat M, Vu C, Matson JB. Radical–radical coupling effects in the direct-growth grafting-through synthesis of bottlebrush polymers using RAFT and ROMP. Polym Chem 2022. [DOI: 10.1039/d2py00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The direct-growth technique was used to synthesize macromonomers from four classes of vinyl monomers, and the influence of monomer type and conversion on coupling reactions was followed in grafting-through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Mohammed Alaboalirat
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - Clark Vu
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - John B. Matson
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Bhabak KP, Mahato SK, Bhattacherjee D, Barman P. Thioredoxin Reductase-triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with Symmetrical Organopolysulfide Probe with Turn-on Near-Infrared Fluorescence Emission. J Mater Chem B 2022; 10:2183-2193. [DOI: 10.1039/d1tb02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the rational development of organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of...
Collapse
|
11
|
Zheng B, Bai T, Tao X, Ling J. An Inspection into Multifarious Ways to Synthesize Poly(Amino Acid)s. Macromol Rapid Commun 2021; 42:e2100453. [PMID: 34562289 DOI: 10.1002/marc.202100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Poly(α-amino acid)s (PAAs) attract growing attention due to their essential role in the application as biomaterials. To synthesize PAAs with desired structures and properties, scientists have developed various synthetic techniques with respective advantages. Here, different approaches to preparing PAAs are inspected. Basic features and recent progresses of these methods are summarized, including polymerizations of amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), as well as other synthetic routes. NCA is the most classical monomer to prepare PAAs with high molecular weights (MWs). NTA polymerizations are promising alternative pathways to produce PAAs, which can tolerate nucleophiles including alcohols, mercaptans, carboxyl acids, and water. By various techniques including choosing appropriate solvents or using organic acids as promoters, NTAs polymerize to produce polypeptoids and polypeptides with narrow dispersities and designed MWs up to 55.0 and 57.0 kg mol-1 , respectively. NPC polymerizations are phosgene-free ways to synthesize polypeptides and polypeptoids. For the future prospects, detail investigations into polymerization mechanisms of NTA and NPC are expected. The synthesis of PAAs with designed topologies and assembly structures is another intriguing topic. The advantages and unsettled problems in various synthetic ways are discussed for readers to choose appropriate approaches for PAAs.
Collapse
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Kaur K, Enders P, Zhu Y, Bratton AF, Powell CR, Kashfi K, Matson JB. Amino acid-based H 2S donors: N-thiocarboxyanhydrides that release H 2S with innocuous byproducts. Chem Commun (Camb) 2021; 57:5522-5525. [PMID: 33956024 DOI: 10.1039/d1cc01309b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A library of N-thiocarboxyanhydrides (NTAs) derived from natural amino acids with benign byproducts and controlled H2S-release kinetics is reported. Minimal acute in vitro toxicity was observed in multiple cell lines, while longer-term toxicity in cancer cells was observed, with slow-releasing donors exhibiting the greatest cytotoxic effects.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. and Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Patrick Enders
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. and Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, Rostock 18059, Germany
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Abigail F Bratton
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Pluth M. Moving Past Quinone-Methides: Recent Advances toward Minimizing Electrophilic Byproducts from COS/H2S Donors. Curr Top Med Chem 2021; 21:2882-2889. [PMID: 34161211 DOI: 10.2174/1568026621666210622130002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) is an important biomolecule that plays key signaling and protective roles in different physiological processes. With the goals of advancing both the available research tools and the associated therapeutic potential of H2S, researchers have developed different methods to deliver H2S on-demand in different biological contexts. A recent approach to develop such donors has been to design compounds that release carbonyl sulfide (COS), which is quickly converted to H2S in biological systems by the ubiquitous enzyme carbonic anhydrase (CA). Although highly diversifiable, many approaches using this general platform release quinone methides or related electrophiles after donor activation. Many such electrophiles are likely scavenged by water, but recent efforts have also expanded alternative approaches that minimize the formation of electrophilic byproducts generated after COS release. This mini-review focuses specifically on recent examples of COS-based H2S donors that do not generate quinone methide byproducts after donor activation.
Collapse
Affiliation(s)
- Michael Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology. University of Oregon. Eugene, OR, United States
| |
Collapse
|
14
|
Levinn CM, Mancuso JL, Lutz RE, Smith HM, Hendon CH, Pluth MD. N-Methylation of Self-Immolative Thiocarbamates Provides Insights into the Mechanism of Carbonyl Sulfide Release. J Org Chem 2021; 86:5443-5451. [PMID: 33818104 DOI: 10.1021/acs.joc.0c02778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) is an important biomolecule, and self-immolative thiocarbamates have shown great promise as triggerable H2S donors with suitable analogous control compounds; however, thiocarbamates with electron-deficient payloads are less efficient H2S donors. We report here the synthesis and study of a series of N-methylated esterase-triggered thiocarbamates that block the postulated unproductive deprotonation-based pathway for these compounds. The relative reaction profiles for H2S release across a series of electron-rich and electron-poor N-Me aniline payloads are examined experimentally and computationally. We show that thiocarbamate N-methylation does block some side reactivity and increases the H2S release profiles for electron-poor donors. Additionally, we show that isothiocyanate release is not a competitive pathway, and rather that the reduced efficiency of electron-poor donors is likely due to other side reactions.
Collapse
Affiliation(s)
- Carolyn M Levinn
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Jenna L Mancuso
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Rachel E Lutz
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Haley M Smith
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
15
|
Zheng B, Xu S, Ni X, Ling J. Understanding Acid-Promoted Polymerization of the N-Substituted Glycine N-Thiocarboxyanhydride in Polar Solvents. Biomacromolecules 2021; 22:1579-1589. [PMID: 33784077 DOI: 10.1021/acs.biomac.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymerization of N-substituted glycine N-thiocarboxyanhydrides (NNTAs) is a promising pathway to prepare functional polypeptoids benefiting from their tolerance to nucleophilic impurities. However, controlled NNTA polymerization is hard to achieve in amide polar solvents, including N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and N-methyl pyrrolidone (NMP), the only aprotic solvents for many biomacromolecules and polypeptoids. In the present work, we successfully achieve controlled NNTA polymerization in amide polar solvents by adding acetic acid as a promoter. The promotion is applied to the polymerization of sarcosine NTA, N-ethyl glycine NTA, and N-butyl glycine NTA. DMAc, DMF, and NMP are suitable solvents to prepare polypeptoids with designable molecular weights and low dispersities (1.06-1.21). The polysarcosines with high molecular weights are prepared up to 35.2 kg/mol. A kinetic investigation quantitatively reveals that the presence of acetic acid not only accelerates the polymerization, but also suppresses H2S-catalyzed decomposition of NNTAs by decreasing the concentration of H2S dissolved in polar solvents. Benzoic acid is also able to promote the polymerization, while trifluoroacetic acid, phosphoric acid, and phenol are not appropriate promoters. The moderate acidity of acids is essential. l-Methionine, l-tryptophan, and l-phenylalanine, which are dissolved in DMF, initiate the controlled polymerization of sarcosine-NTA in the presence of acetic acid and introduce functional end groups to polysarcosines quantitatively. In DMAc, hydrophilic vancomycin is grafted by poly(N-butyl glycine). The amphiphilic product dissolves in dichloromethane and stabilizes water-in-oil emulsion.
Collapse
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Zheng B, Bai T, Ling J, Sun J. Direct N-substituted N-thiocarboxyanhydride polymerization towards polypeptoids bearing unprotected carboxyl groups. Commun Chem 2020; 3:144. [PMID: 36703352 PMCID: PMC9814353 DOI: 10.1038/s42004-020-00393-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Synthesis of poly(α-amino acid)s bearing carboxyl groups is a critical pathway to prepare biomaterials to simulate functional proteins. The traditional approaches call for carboxyl-protected monomers to prevent degradation of monomers or wrong linkage. In this contribution, we synthesize N-carboxypentyl glycine N-thiocarboxyanhydride (CPG-NTA) and iminodiacetic acid N-thiocarboxyanhydride (IDA-NTA) without protection. Initiated by amines, CPG-NTA directly polymerizes into polyCPG bearing unprotected carboxyl groups with controlled molecular weight (2.8-9.3 kg mol-1) and low dispersities (1.08-1.12). Block and random copolymerizations of CPG-NTA with N-ethyl glycine N-thiocarboxyanhydride (NEG-NTA) demonstrate its versatile construction of complicated polypeptoids. On the contrary, IDA-NTA transforms amines into cyclic IDA dimer-capped species with carboxyl end group in decent yields (>89%) regio-selectively. Density functional theory calculation elucidates that IDA repeating unit is prone to cyclize to be the six-membered ring product with low ΔG. The polymer is a good adhesive reagent to various materials with adhesive strength of 33-229 kPa.
Collapse
Affiliation(s)
- Botuo Zheng
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Innovation Center for Minimally Invasive Techniques and Devices, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
17
|
Hankins RA, Suarez SI, Kalk MA, Green NM, Harty MN, Lukesh JC. An Innovative Hydrogen Peroxide‐Sensing Scaffold and Insight Towards its Potential as an ROS‐Activated Persulfide Donor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rynne A. Hankins
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - S. Israel Suarez
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Madison A. Kalk
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Nolan M. Green
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Megan N. Harty
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C. Lukesh
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
18
|
Hankins RA, Suarez SI, Kalk MA, Green NM, Harty MN, Lukesh JC. An Innovative Hydrogen Peroxide‐Sensing Scaffold and Insight Towards its Potential as an ROS‐Activated Persulfide Donor. Angew Chem Int Ed Engl 2020; 59:22238-22245. [DOI: 10.1002/anie.202010530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Rynne A. Hankins
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - S. Israel Suarez
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Madison A. Kalk
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Nolan M. Green
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Megan N. Harty
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C. Lukesh
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
19
|
Mahato SK, Bhattacherjee D, Bhabak KP. The biothiol-triggered organotrisulfide-based self-immolative fluorogenic donors of hydrogen sulfide enable lysosomal trafficking. Chem Commun (Camb) 2020; 56:7769-7772. [PMID: 32555887 DOI: 10.1039/d0cc00613k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biothiol-reactive organotrisulfide-based self-immolative fluorogenic donors of H2S are rationally designed for the efficient monitoring of intracellular and lysosomal trafficking of H2S with a concomitant turn-on fluorescence. The non-toxic nature of the donors with a sustained release of H2S will certainly be helpful for their biomedical applications in the future.
Collapse
Affiliation(s)
- Sulendar K Mahato
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
20
|
Cerda MM, Mancuso JL, Mullen EJ, Hendon CH, Pluth MD. Use of Dithiasuccinoyl-Caged Amines Enables COS/H 2 S Release Lacking Electrophilic Byproducts. Chemistry 2020; 26:5374-5380. [PMID: 31950529 DOI: 10.1002/chem.201905577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Indexed: 12/13/2022]
Abstract
The enzymatic conversion of carbonyl sulfide (COS) to hydrogen sulfide (H2 S) by carbonic anhydrase has been used to develop self-immolating thiocarbamates as COS-based H2 S donors to further elucidate the impact of reactive sulfur species in biology. The high modularity of this approach has provided a library of COS-based H2 S donors that can be activated by specific stimuli. A common limitation, however, is that many such donors result in the formation of an electrophilic quinone methide byproduct during donor activation. As a mild alternative, we demonstrate here that dithiasuccinoyl groups can function as COS/H2 S donor motifs, and that these groups release two equivalents of COS/H2 S and uncage an amine payload under physiologically relevant conditions. Additionally, we demonstrate that COS/H2 S release from this donor motif can be altered by electronic modulation and alkyl substitution. These insights are further supported by DFT investigations, which reveal that aryl and alkyl thiocarbamates release COS with significantly different activation energies.
Collapse
Affiliation(s)
- Matthew M Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| | - Jenna L Mancuso
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| | - Emma J Mullen
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| |
Collapse
|
21
|
Kaur K, Wang Y, Matson JB. Linker-Regulated H 2S Release from Aromatic Peptide Amphiphile Hydrogels. Biomacromolecules 2020; 21:1171-1178. [PMID: 32053359 DOI: 10.1021/acs.biomac.9b01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlled release is an essential requirement for delivery of hydrogen sulfide (H2S) because of its reactive nature, short half-life in biological fluids, and toxicity at high concentrations. In this context, H2S delivery via hydrogels may be beneficial as they can deliver H2S locally at the site of interest. Herein, we employed hydrogels based on aromatic peptide amphiphiles (APAs) with tunable mechanical properties to modulate the rates of H2S release. The APAs contained an aromatic S-aroylthiooxime (SATO) H2S donor attached with a linker to a short IAVEEE hexapeptide. Linker units included carbonyl, substituted O-methylenes, alkenyl, and alkyl segments with the goal of evaluating the role of linker structure on self-assembly, capacity for hydrogelation, and H2S release rate. We studied each peptide by transmission electron microscopy, circular dichroism spectroscopy, and rheology, and we measured H2S release rates from each gel, triggering SATO decomposition and release of H2S by addition of cysteine (Cys). Using an H2S-selective electrode probe as well as a turn-on fluorescent H2S probe in the presence of H9C2 cardiomyocytes, we found that the rate of H2S release from the hydrogels depended on the rate of Cys penetration into the nanofiber core with stiffer gels showing longer overall release.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Levinn CM, Cerda MM, Pluth MD. Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:96-109. [PMID: 31554416 PMCID: PMC6918874 DOI: 10.1089/ars.2019.7841] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is an important biological signaling molecule involved in many physiological processes. These diverse roles have led researchers to develop contemporary methods to deliver H2S under physiologically relevant conditions and in response to various stimuli. Recent Advances: Different small-molecule donors have been developed that release H2S under various conditions. Key examples include donors activated in response to hydrolysis, to endogenous species, such as thiols, reactive oxygen species, and enzymes, and to external stimuli, such as photoactivation and bio-orthogonal chemistry. In addition, an alternative approach to release H2S has utilized the catalyzed hydrolysis of carbonyl sulfide (COS) by carbonic anhydrase to generate libraries of activatable COS-based H2S donors. Critical Issues: Small-molecule H2S donors provide important research and pharmacological tools to perturb H2S levels. Key needs, both in the development and in the use of such donors, include access to new donors that respond to specific stimuli as well as donors with well-defined control compounds that allow for clear delineation of the impact of H2S delivery from other donor byproducts. Future Directions: The abundance of reported small-molecule H2S donors provides biologists and physiologists with a chemical toolbox to ask key biological questions and to develop H2S-related therapeutic interventions. Further investigation into different releasing efficiencies in biological contexts and a clear understanding of biological responses to donors that release H2S gradually (e.g., hours to days) versus donors that generate H2S quickly (e.g., seconds to minutes) is needed.
Collapse
Affiliation(s)
- Carolyn M. Levinn
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Matthew M. Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| |
Collapse
|
23
|
He Y, Zhao B, Kan W, Ding L, Yu Z, Wang M, Song B, Wang L. Two isomeric and distinguishable H2S fluorescence probes for monitoring spoilage of eggs and visualizing exogenous and endogenous H2S in living cells. Analyst 2020; 145:213-222. [DOI: 10.1039/c9an01629e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate fabrication of fluorescence probes to efficiently monitor and detect H2S levels in the fields of foodstuffs and physiology is crucial.
Collapse
Affiliation(s)
- Yuqian He
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Limin Ding
- Cadre Ward
- First Hospital of Qiqihar City
- Qiqihar 161005
- People's Republic China
| | - Zhaochuan Yu
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Mingyue Wang
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Bo Song
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute
- Qiqihar University
- Qiqihar 161006
- China
| |
Collapse
|