1
|
Awad S, Araújo M, Faria P, Sarmento B, Martins C. Chemical engineering of zein with polyethylene glycol and Angiopep-2 to manufacture a brain-targeted docetaxel nanomedicine for glioblastoma treatment. Drug Deliv Transl Res 2024; 14:3585-3598. [PMID: 39009933 PMCID: PMC11499337 DOI: 10.1007/s13346-024-01659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Glioblastoma (GBM) is the deadliest adult brain cancer. The current standard-of-care chemotherapy using orally administered temozolomide (TMZ) presents poor improvement in patient survival, emphasizing the compelling need for new therapies. A possible chemotherapeutic alternative is docetaxel (DTX), which possesses higher tumoricidal potency against GBM cells. However, its limited blood-brain barrier (BBB) permeability poses a constraint on its application. Nonetheless, nanomedicine offers promising avenues for overcoming this challenge. Angiopep-2 (ANG2) is a peptide that targets the BBB-overexpressed low-density lipoprotein receptor (LDLR). In this work, we managed, for the first time, to employ a pioneering approach of covalently linking zein protein with polyethylene glycol (PEG) and ANG2 prior to its formulation into nanoparticles (ZNPs) with enhanced stability and LDLR-mediated brain targetability, respectively. Carbodiimide and click chemistry approaches were optimized, resulting in functional modification of zein with around 25% PEG, followed by functional modification of PEG with nearly 100% ANG2. DTX-loaded ZNPs presented 100 nm average size, indicating high suitability for BBB crossing through receptor-mediated transcytosis. ZNPs maintained the cytotoxic effect of the loaded DTX against GBM cells, while demonstrating a safe matrix against BBB cells. Importantly, these brain-targeted ZNPs showcased up to fourfold enhancement in blood-to-brain permeability in a BBB in vitro model, highlighting the potential of this novel approach of BBB targeting in significantly improving therapeutic outcomes for GBM patients. The versatility of the system and the possibility of significantly increasing drug concentration in the brain open the door to its future application in a wide range of other brain-related diseases.
Collapse
Affiliation(s)
- Seem Awad
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal
| | - Marco Araújo
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal
| | - Paulo Faria
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal
| | - Bruno Sarmento
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal.
- IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, 4585-116, Portugal.
| | - Cláudia Martins
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
- INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200- 135, Portugal.
| |
Collapse
|
2
|
Dalley NA, Stern KL, Kitchen RR, Lloyd KB, Price JL. Electrostatic origin of a stabilizing synergistic interaction among b-, c-, and f-residues in a trimeric coiled coil. Pept Sci (Hoboken) 2024; 116:e24336. [PMID: 38882551 PMCID: PMC11175585 DOI: 10.1002/pep2.24336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 06/18/2024]
Abstract
Coiled coils are one of most common protein quaternary structures and represent the best understood relationship between amino acid sequence and protein conformation. Whereas the roles of residues at the canonical heptad positions the a, d, e, and g are understood in precise detail, conventional approaches often assume that the solvent-exposed b-, c-, and f-positions can be varied broadly for application-specific purposes with minimal consequences. However, a growing body of evidence suggests that interactions among these b, c, and f residues can contribute substantially to coiled-coil conformational stability. In the trimeric coiled coil described here, we find that b-position Glu10 engages in a stabilizing long-range synergistic interaction with c-position Lys18 (ΔΔΔGf = -0.65 ± 0.02 kcal/mol). This favorable interaction depends strongly on the presence of two nearby f-position residues: Lys 7 and Tyr14. Extensive mutational analysis of these residues in the presence of added salt vs. denaturant suggests that this long-range synergistic interaction is primarily electrostatic in origin, but also depends on the precise location and acidity of a side-chain hydrogen-bond donor within f-position Tyr14.
Collapse
Affiliation(s)
- Nicholas A Dalley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kimberlee L Stern
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Richard R Kitchen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Keegan B Lloyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
3
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
4
|
Stern JA, Free TJ, Stern KL, Gardiner S, Dalley NA, Bundy BC, Price JL, Wingate D, Della Corte D. A probabilistic view of protein stability, conformational specificity, and design. Sci Rep 2023; 13:15493. [PMID: 37726313 PMCID: PMC10509192 DOI: 10.1038/s41598-023-42032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Various approaches have used neural networks as probabilistic models for the design of protein sequences. These "inverse folding" models employ different objective functions, which come with trade-offs that have not been assessed in detail before. This study introduces probabilistic definitions of protein stability and conformational specificity and demonstrates the relationship between these chemical properties and the [Formula: see text] Boltzmann probability objective. This links the Boltzmann probability objective function to experimentally verifiable outcomes. We propose a novel sequence decoding algorithm, referred to as "BayesDesign", that leverages Bayes' Rule to maximize the [Formula: see text] objective instead of the [Formula: see text] objective common in inverse folding models. The efficacy of BayesDesign is evaluated in the context of two protein model systems, the NanoLuc enzyme and the WW structural motif. Both BayesDesign and the baseline ProteinMPNN algorithm increase the thermostability of NanoLuc and increase the conformational specificity of WW. The possible sources of error in the model are analyzed.
Collapse
Affiliation(s)
- Jacob A Stern
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Tyler J Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Kimberlee L Stern
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Spencer Gardiner
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, USA
| | - Nicholas A Dalley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David Wingate
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Dennis Della Corte
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
5
|
Stern KL, Dalley NA, McMurray NT, Billings WM, Loftus TJ, Jones ZB, Hadfield JR, Price JL. Prerequisites for Stabilizing Long-Range Synergistic Interactions among b-, c-, and f-Residues in Coiled Coils. Biochemistry 2022; 61:319-326. [PMID: 35129961 PMCID: PMC9202806 DOI: 10.1021/acs.biochem.1c00760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled coils are among the most abundant tertiary and quaternary structures found in proteins. A growing body of evidence suggests that long-range synergistic interactions among solvent-exposed residues can contribute substantially to coiled-coil conformational stability, but our understanding of the key sequence and structural prerequisites of this effect is still developing. Here, we show that the strength of synergistic interaction involving a b-position Glu (i), an f-position Tyr (i + 4), and a c-position Lys (i + 8) depends on the identity of the f-position residue, the length and stability of the coiled coil, and its oligomerization stoichiometry/surface accessibility. Combined with previous observations, these results map out predictable sequence- and structure-based criteria for enhancing coiled-coil stability by up to -0.58 kcal/mol per monomer (or -2.32 kcal/mol per coiled-coil tetramer). Our observations expand the available tools for enhancing coiled coil stability by sequence variation at solvent-exposed b-, c-, and f-positions and suggest the need to exercise care in the choice of substitutions at these positions for application-specific purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joshua L. Price
- Corresponding Author: Joshua L. Price, C100 BNSN, Brigham Young University, Provo, UT 84602;
| |
Collapse
|
6
|
Draper SRE, Jones ZB, Earl SO, Dalley NA, Ashton DS, Carter AJ, Conover BM, Price JL. PEGylation Increases the Strength of a Nearby NH-π Hydrogen Bond in the WW Domain. Biochemistry 2021; 60:2064-2070. [PMID: 34137579 DOI: 10.1021/acs.biochem.1c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we show that an NH-π interaction between a highly conserved Asn and a nearby Trp stabilizes the WW domain of the human protein Pin1. The strength of this NH-π interaction depends on the structure of the arene, with NH-π interactions involving Trp or naphthylalanine being substantially more stabilizing than those involving Tyr or Phe. Calculations suggest arene size and polarizability are key structural determinants of NH-π interaction strength. Methylation or PEGylation of the Asn side-chain amide nitrogen each strengthens the associated NH-π interaction, though likely for different reasons. We hypothesize that methylation introduces steric clashes that destabilize conformations in which the NH-π interaction is not possible, whereas PEGylation strengthens the NH-π interaction via localized desolvation of the protein surface.
Collapse
Affiliation(s)
| | | | - Seth O Earl
- Brigham Young University, Provo, Utah 84602, United States
| | | | | | | | | | - Joshua L Price
- Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
7
|
Draper SRE, Ashton DS, Conover BM, Carter AJ, Stern KL, Xiao Q, Price JL. PEGylation near a Patch of Nonpolar Surface Residues Increases the Conformational Stability of the WW Domain. J Org Chem 2020; 85:1725-1730. [PMID: 31749365 DOI: 10.1021/acs.joc.9b02615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many proteins have one or more surface-exposed patches of nonpolar residues; our observations here suggest that PEGylation near such locations might be a useful strategy for increasing protein conformational stability. Specifically, we show that conjugating a PEG-azide to a propargyloxyphenylalanine via the copper(I)-catalyzed azide-alkyne cycloaddition can increase the conformational stability of the WW domain due to a favorable synergistic effect that depends on the hydrophobicity of a nearby patch of nonpolar surface residues.
Collapse
Affiliation(s)
- Steven R E Draper
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Dallin S Ashton
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Benjamin M Conover
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Anthony J Carter
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Kimberlee L Stern
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Qiang Xiao
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Joshua L Price
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|