1
|
Avila‐Cobian LF, De Benedetti S, Hoshino H, Nguyen VT, El‐Araby AM, Sader S, Hu DD, Cole SL, Kim C, Fisher JF, Champion MM, Mobashery S. Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein. Protein Sci 2024; 33:e5038. [PMID: 38864725 PMCID: PMC11168074 DOI: 10.1002/pro.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Stefania De Benedetti
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Amr M. El‐Araby
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Safaa Sader
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Sara L. Cole
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
2
|
Higuera‐Llantén S, Alcalde‐Rico M, Vasquez‐Ponce F, Ibacache‐Quiroga C, Blazquez J, Olivares‐Pacheco J. A whole-cell hypersensitive biosensor for beta-lactams based on the AmpR-AmpC regulatory circuit from the Antarctic Pseudomonas sp. IB20. Microb Biotechnol 2024; 17:e14385. [PMID: 38197486 PMCID: PMC10832568 DOI: 10.1111/1751-7915.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024] Open
Abstract
Detecting antibiotic residues is vital to minimize their impact. Yet, existing methods are complex and costly. Biosensors offer an alternative. While many biosensors detect various antibiotics, specific ones for beta-lactams are lacking. To address this gap, a biosensor based on the AmpC beta-lactamase regulation system (ampR-ampC) from Pseudomonas sp. IB20, an Antarctic isolate, was developed in this study. The AmpR-AmpC system is well-conserved in the genus Pseudomonas and has been extensively studied for its involvement in peptidoglycan recycling and beta-lactam resistance. To create the biosensor, the ampC coding sequence was replaced with the mCherry fluorescent protein as a reporter, resulting in a transcriptional fusion. This construct was then inserted into Escherichia coli SN0301, a beta-lactam hypersensitive strain, generating a whole-cell biosensor. The biosensor demonstrated dose-dependent detection of penicillins, cephalosporins and carbapenems. However, the most interesting aspect of this work is the high sensitivity presented by the biosensor in the detection of carbapenems, as it was able to detect 8 pg/mL of meropenem and 40 pg/mL of imipenem and reach levels of 1-10 ng/mL for penicillins and cephalosporins. This makes the biosensor a powerful tool for the detection of beta-lactam antibiotics, specifically carbapenems, in different matrices.
Collapse
Affiliation(s)
- Sebastián Higuera‐Llantén
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
| | - Manuel Alcalde‐Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena, CSIC, Universidad de SevillaSevillaSpain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Felipe Vasquez‐Ponce
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
- Department of Microbiology, Institute of Biomedical SciencesUniversidade de São PauloSão PauloBrazil
| | - Claudia Ibacache‐Quiroga
- Escuela de Nutrición y Dietética, Facultad de FarmaciaUniversidad de ValparaísoValparaísoChile
- Centro de Micro‐BioinnovaciónUniversidad de ValparaísoValparaísoChile
| | - Jesús Blazquez
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Jorge Olivares‐Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
| |
Collapse
|
3
|
Jeffs MA, Gray RAV, Sheth PM, Lohans CT. Development of a whole-cell biosensor for β-lactamase inhibitor discovery. Chem Commun (Camb) 2023; 59:12707-12710. [PMID: 37801331 DOI: 10.1039/d3cc03583b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The production of β-lactamases by bacterial pathogens endangers antimicrobial therapy, and new inhibitors for β-lactamases are urgently needed. We report the development of a luminescent-based biosensor that quantifies β-lactamase inhibition in a cellular context, based on the activation of transcriptional factor AmpR following the exposure of bacterial cells to β-lactams. This rapid method can account for factors like membrane permeability and can be employed to identify new β-lactamase inhibitors.
Collapse
Affiliation(s)
- Mitchell A Jeffs
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Rachel A V Gray
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Prameet M Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
4
|
Escobar-Salom M, Barceló IM, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Bacterial virulence regulation through soluble peptidoglycan fragments sensing and response: knowledge gaps and therapeutic potential. FEMS Microbiol Rev 2023; 47:fuad010. [PMID: 36893807 PMCID: PMC10039701 DOI: 10.1093/femsre/fuad010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Given the growing clinical-epidemiological threat posed by the phenomenon of antibiotic resistance, new therapeutic options are urgently needed, especially against top nosocomial pathogens such as those within the ESKAPE group. In this scenario, research is pushed to explore therapeutic alternatives and, among these, those oriented toward reducing bacterial pathogenic power could pose encouraging options. However, the first step in developing these antivirulence weapons is to find weak points in the bacterial biology to be attacked with the goal of dampening pathogenesis. In this regard, during the last decades some studies have directly/indirectly suggested that certain soluble peptidoglycan-derived fragments display virulence-regulatory capacities, likely through similar mechanisms to those followed to regulate the production of several β-lactamases: binding to specific transcriptional regulators and/or sensing/activation of two-component systems. These data suggest the existence of intra- and also intercellular peptidoglycan-derived signaling capable of impacting bacterial behavior, and hence likely exploitable from the therapeutic perspective. Using the well-known phenomenon of peptidoglycan metabolism-linked β-lactamase regulation as a starting point, we gather and integrate the studies connecting soluble peptidoglycan sensing with fitness/virulence regulation in Gram-negatives, dissecting the gaps in current knowledge that need filling to enable potential therapeutic strategy development, a topic which is also finally discussed.
Collapse
Affiliation(s)
- María Escobar-Salom
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isabel María Barceló
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
| | - Gabriel Torrens
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University. Försörjningsvägen 2A, SE-901 87 Umeå, Sweden
| | - Antonio Oliver
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carlos Juan
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
5
|
Karlowsky JA, Lob SH, Khan A, Chen WT, Woo PCY, Seto WH, Ip M, Leung S, Wong QWL, Chau RWY, DeRyke CA, Young K, Motyl MR, Sahm DF. Activity of ceftolozane/tazobactam against Gram-negative isolates among different infections in Hong Kong: SMART 2017-2019. J Med Microbiol 2022; 71. [PMID: 35451945 DOI: 10.1099/jmm.0.001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Ceftolozane/tazobactam was approved by the Drug Office, Department of Health, Government of the Hong Kong Special Administrative Region in 2017.Hypothesis/Gap Statement. Currently the in vitro activity of ceftolozane/tazobactam against Gram-negative pathogens isolated from patients in Hong Kong is undocumented. It would be prudent to document the activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and Enterobacterales isolated from hospitalized patients in Hong Kong.Aim. To describe the in vitro susceptibility of recent clinical isolates of P. aeruginosa and the two most common Enterobacterales species (Klebsiella pneumoniae, Escherichia coli) cultured from respiratory tract, intra-abdominal, urinary tract and bloodstream infection samples to ceftolozane/tazobactam and other commonly used antimicrobial agents.Methodology. CLSI-defined broth microdilution MICs were determined and interpreted for Gram-negative isolates collected in Hong Kong from 2017 to 2019 by the SMART surveillance programme.Results. For P. aeruginosa, 96.7 % of isolates (n=210) were susceptible to ceftolozane/tazobactam, while susceptibility rates were ≥14 % lower to meropenem (82.9 % susceptible), cefepime (82.4 %), ceftazidime (81.4 %), piperacillin/tazobactam (76.7 %) and levofloxacin (79.5 %). Ceftolozane/tazobactam inhibited 85.7 % of piperacillin/tazobactam-nonsusceptible isolates, 80.6-82.1 % of cefepime-, ceftazidime- or meropenem-nonsusceptible isolates, and 75.9 % of multidrug-resistant (MDR) isolates of P. aeruginosa. For K. pneumoniae, 96.1 % of isolates (n=308) were susceptible to ceftolozane/tazobactam compared with meropenem (99.0 % susceptible), piperacillin/tazobactam (93.8 %), cefepime (85.7 %) and ceftazidime (85.4 %). The majority (88.3 %) of ESBL (extended-spectrum β-lactamase) non-CRE (carbapenem-resistant Enterobacterales) phenotype isolates of K. pneumoniae were susceptible to ceftolozane/tazobactam, comparable to piperacillin/tazobactam (85.0 %) but lower than meropenem (100 %). For E. coli, 98.5 % of isolates (n=609) were susceptible to ceftolozane/tazobactam compared to meropenem (99.3 % susceptible), piperacillin/tazobactam (96.7 %), ceftazidime (82.3 %) and cefepime (76.5 %). The majority (96.7 %) of ESBL non-CRE phenotype isolates of E. coli were susceptible to ceftolozane/tazobactam, similar to both meropenem (100 %) and piperacillin/tazobactam (94.5 %).Conclusions. Overall, >96 % of clinical isolates of P. aeruginosa, K. pneumoniae and E. coli collected in Hong Kong in 2017-2019 were susceptible to ceftolozane/tazobactam, while the activity of several commonly prescribed β-lactams was reduced, especially for P. aeruginosa. Continued surveillance of ceftolozane/tazobactam and other agents is warranted.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA, Schaumburg, IL, 60173, USA.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | | | - Aaron Khan
- Global Medical & Scientific Affairs, MSD (Asia) Ltd., Hong Kong
| | | | - Patrick C Y Woo
- Department of Microbiology, University of Hong Kong, Hong Kong
| | - Wing Hong Seto
- School of Public Health, WHO Collaborating Centre, University of Hong Kong, Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Stanley Leung
- Clinical Laboratories and Pathology, Hong Kong Adventist Hospital, Hong Kong
| | | | - Rene W Y Chau
- Global Medical & Scientific Affairs, MSD (Asia) Ltd., Hong Kong
| | | | | | | | | |
Collapse
|
6
|
Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob Agents Chemother 2021; 65:AAC.01117-20. [PMID: 33199392 DOI: 10.1128/aac.01117-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Resistance mechanisms of Pseudomonas aeruginosa to ceftolozane/tazobactam (C/T) were assessed on a collection of 420 nonredundant strains nonsusceptible to ceftazidime (MIC > 8 μg/ml) and/or imipenem (>4 μg/ml), collected by 36 French hospital laboratories over a one-month period (the GERPA study). Rates of C/T resistance (MIC > 4/4 μg/ml) were equal to 10% in this population (42/420 strains), and 23.2% (26/112) among the isolates resistant to both ceftazidime and imipenem. A first group of 21 strains (50%) was found to harbor various extended-spectrum β-lactamases (1 OXA-14; 2 OXA-19; 1 OXA-35; 1 GES-9; and 3 PER-1), carbapenemases (2 GES-5; 1 IMP-8; and 8 VIM-2), or both (1 VIM-2/OXA-35 and 1 VIM-4/SHV-2a). All the strains of this group belonged to widely distributed epidemic clones (ST111, ST175, CC235, ST244, ST348, and ST654), and were highly resistant to almost all the antibiotics tested except colistin. A second group was composed of 16 (38%) isolates moderately resistant to C/T (MICs from 8/4 to 16/4 μg/ml), of which 7 were related to international clones (ST111, ST253, CC274, ST352, and ST386). As demonstrated by targeted mass spectrometry, cloxacillin-based inhibition tests, and gene bla PDC deletion experiments, this resistance phenotype was correlated with an extremely high production of cephalosporinase PDC. In part accounting for this strong PDC upregulation, genomic analyses revealed the presence of mutations in the regulator AmpR (D135N/G in 6 strains) and enzymes of the peptidoglycan recycling pathway, such as AmpD, PBP4, and Mpl (9 strains). Finally, all of the 5 (12%) remaining C/T-resistant strains (group 3) appeared to encode PDC variants with mutations known to improve the hydrolytic activity of the β-lactamase toward ceftazidime and C/T (F147L, ΔL223-Y226, E247K, and N373I). Collectively, our results highlight the importance of both intrinsic and transferable mechanisms in C/T-resistant P. aeruginosa Which mutational events lead some clinical strains to massively produce the natural cephalosporinase PDC remains incompletely understood.
Collapse
|