1
|
Gong S, Gao G, Sun T, Shen L. Inhibition of α-Synuclein Misfolding into β-Sheet Domains on Medium-Sized Gold Nanoclusters: Evidence from Enhanced Sampling MD Simulations. ACS Macro Lett 2024:1476-1482. [PMID: 39437152 DOI: 10.1021/acsmacrolett.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Targeting Parkinson's disease (PD) related protein, α-synuclein (αS), via gold nanoclusters (AuNCs) has received considerable attention in PD treatments, but its molecular basis on the initial interactions between αS and AuNCs remains elusive due to the absence of a unique secondary structure of αS chains. Here, at the single-cluster level, we incorporate well-tempered metadynamics simulations to explore the structural and thermodynamic characteristics of the full length αS adsorbed on different-sized AuNCs (Aun, n = 25, 36, 44, 68, 102) with modeled thiolated ligands (Aun@Lig). The conformational landscapes of αS indicate that uncharged Aun@SCH2OH chaperones the native intrinsically disordered conformations of αS, while negatively and positively charged AuNCs greatly increase the likelihood of forming intramolecular β-sheet domains, which are necessary for αS fibrillation and are a hallmark of PD. The binding details further demonstrate the significant inhibitory effect of the medium-sized Au36@SCH2OH on αS misfolding into β-sheet domains. This provides a valuable guideline for customizing AuNCs to precisely manipulate protein folding and misfolding behaviors, with potential implications for disease treatments.
Collapse
Affiliation(s)
- Shuai Gong
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Guanbin Gao
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Shen
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Prosad Banik S, Kumar P, Bagchi D, Paul S, Goel A, Bagchi M, Chakraborty S. Fenfuro®-mediated arrest in the formation of protein-methyl glyoxal adducts: a new dimension in the anti-hyperglycemic potential of a novel fenugreek seed extract. Toxicol Mech Methods 2024; 34:877-885. [PMID: 38832450 DOI: 10.1080/15376516.2024.2358520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
The fenugreek plant (Trigonella foenum-graecum) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the in vitro glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro® was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro® as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro®, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro® boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.
Collapse
Affiliation(s)
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Debasis Bagchi
- Dept of Biology, College of Arts and Sciences, and Dept of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Souradip Paul
- Protein Folding & Dynamics Group, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Apurva Goel
- Regulatory Dept, Chemical Resources (CHERESO), Panchkula, India
| | | | - Sanjoy Chakraborty
- Dept of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| |
Collapse
|
3
|
Cao K, Xue L, Luo K, Huo W, Ruan P, Xia D, Yao X, Zhao W, Gao L, Gao X. Induction of Non-Canonical Ferroptosis by Targeting Clusters Suppresses Glioblastoma. Pharmaceutics 2024; 16:1205. [PMID: 39339241 PMCID: PMC11434859 DOI: 10.3390/pharmaceutics16091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently target GBM both in vitro and in vivo. Interestingly, the uptake of NA significantly sensitizes GBM cells to ferroptosis, a form of programmed cell death that can bypass the tumor resistance to apoptosis. This effect is exerted through regulating the HO-1-dependent iron ion metabolism, which is the non-canonical pathway of ferroptosis. The combined treatment of a ferroptosis inducer and NA profoundly inhibited tumor growth in both the GBM spheroid model and a syngeneic mouse model with enhanced ferroptosis levels and excellent biosafety. Importantly, the infiltration of tumoricidal lymphocytes is also significantly increased within tumor. Therefore, NA presents a potential novel nanomaterial-based strategy for GBM treatment.
Collapse
Affiliation(s)
- Kai Cao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Xue
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Panpan Ruan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wencong Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
5
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
7
|
Viola G, Barracchia CG, Tira R, Parolini F, Leo G, Bellanda M, Munari F, Capaldi S, D’Onofrio M, Assfalg M. New Paradigm for Nano-Bio Interactions: Multimolecular Assembly of a Prototypical Disordered Protein with Ultrasmall Nanoparticles. NANO LETTERS 2022; 22:8875-8882. [PMID: 36346924 PMCID: PMC9706667 DOI: 10.1021/acs.nanolett.2c02902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Indexed: 05/20/2023]
Abstract
Understanding the interactions between nanoparticles (NPs) and proteins is crucial for the successful application of NPs in biological contexts. Protein adsorption is dependent on particle size, and protein binding to ultrasmall (1-3 nm) NPs is considered to be generally weak. However, most studies have involved structured biomacromolecules, while the interactions of ultrasmall NPs with intrinsically disordered proteins (IDPs) have remained elusive. IDPs are abundant in eukaryotes and found to associate with NPs intracellularly. As a model system, we focused on ultrasmall gold nanoparticles (usGNPs) and tau, a cytosolic IDP associated with Alzheimer's disease. Using site-resolved NMR, steady-state fluorescence, calorimetry, and circular dichroism, we reveal that tau and usGNPs form stable multimolecular assemblies, representing a new type of nano-bio interaction. Specifically, the observed interaction hot spots explain the influence of usGNPs on tau conformational transitions, with implications for the intracellular targeting of aberrant IDP aggregation.
Collapse
Affiliation(s)
- Giovanna Viola
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Roberto Tira
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Giulia Leo
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Massimo Bellanda
- Department
of Chemistry, University of Padova, 35131 Padova, Italy
| | - Francesca Munari
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Stefano Capaldi
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Michael Assfalg
- Department
of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
8
|
Imidazole-stabilized gold nanoclusters with thiol depletion capacity for antibacterial application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Wang C, Feng L, Liu J, Fu J, Shen J, Qi W. Manipulating the Assembly of Au Nanoclusters for Luminescence Enhancement and Circularly Polarized Luminescence. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1453. [PMID: 35564162 PMCID: PMC9101361 DOI: 10.3390/nano12091453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
Abstract
Au nanocluster (AuNCs)-based luminescent functional materials have attracted the interest of researchers owing to their small size, tractable surface modification, phosphorescence lifetime and biocompatibility. However, the poor luminescence quantum yield (QY) of AuNCs limits their practical applications. Herein, we synthesized a type of AuNCs modified by 4,6-diamino-2-mercaptopyrimidine hydrate (DPT-AuNCs). Furthermore, organic acids, i.e., citric acid (CA) and tartaric acid (TA), were chosen for co-assembly with DPT-AuNCs to produce AuNCs-based luminescent materials with enhanced emission. Firstly, it was found that CA could significantly enhance the emission of DPT-AuNCs with the formation of red emission nanofibers (QY = 17.31%), which showed a potential for usage in I- detection. The n···π/π···π interaction between the CA and the DPT ligand was proposed as crucial for the emission. Moreover, chiral TA could not only improve the emission of DPT-AuNCs, but could also transfer its chirality to DPT-AuNCs and induce the formation of circularly polarized luminescence (CPL)-active nanofibers. It was demonstrated that the CPL signal could increase 4.6-fold in a ternary CA/TA/DPT-AuNCs co-assembly system. This work provides a convenient way to build AuNCs-based luminescent materials as probes, and opens a new avenue for building CPL-active materials by achiral NCs through a co-assembly strategy.
Collapse
Affiliation(s)
| | | | | | | | - Jinglin Shen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (C.W.); (L.F.); (J.L.); (J.F.)
| | - Wei Qi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (C.W.); (L.F.); (J.L.); (J.F.)
| |
Collapse
|
10
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
11
|
Mahapatra A, Mandal N, Chattopadhyay K. Cholesterol in Synaptic Vesicle Membranes Regulates the Vesicle-Binding, Function, and Aggregation of α-Synuclein. J Phys Chem B 2021; 125:11099-11111. [PMID: 34473498 DOI: 10.1021/acs.jpcb.1c03533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss of function and aggregation of the neuronal protein α-Synuclein (A-Syn) underlies the pathogenesis of Parkinson's disease (PD), and both the function and aggregation of this protein happen to be mediated via its binding to the synaptic vesicles (SVs) at the presynaptic termini. An essential constituent of SV membranes is cholesterol, with which A-Syn directly interacts while binding to membranes. Thus, cholesterol content in SV membranes is likely to affect the binding of A-Syn to these vesicles and consequently its functional and pathogenic behaviors. Interestingly, the dyshomeostasis of cholesterol has often been associated with PD, with reports linking both high and low cholesterol levels to an increased risk of neurodegeneration. Herein, using SV-mimicking liposomes containing increasing percentages of membrane cholesterol, we show (with mathematical interpretation) that the binding of A-Syn to synaptic-like vesicles is strongest in the presence of an optimum cholesterol content, which correlates to its maximum function and minimum aggregation. This implicates a minimum risk of neurodegeneration at optimum cholesterol levels and rationalizes the existing controversial relationship between cholesterol levels and PD. Increased membrane cholesterol was, however, found to protect against damage caused by aggregated A-Syn, complementing previous reports and portraying one advantage of high cholesterol over low.
Collapse
Affiliation(s)
- Anindita Mahapatra
- Structural Biology and Bio-informatics Division, Indian Institute of Chemical Biology, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narattam Mandal
- Structural Biology and Bio-informatics Division, Indian Institute of Chemical Biology, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bio-informatics Division, Indian Institute of Chemical Biology, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Li A, Tyson J, Patel S, Patel M, Katakam S, Mao X, He W. Emerging Nanotechnology for Treatment of Alzheimer's and Parkinson's Disease. Front Bioeng Biotechnol 2021; 9:672594. [PMID: 34113606 PMCID: PMC8185219 DOI: 10.3389/fbioe.2021.672594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of the two most common neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's Disease (AD), are expected to rise alongside the progressive aging of society. Both PD and AD are classified as proteinopathies with misfolded proteins α-synuclein, amyloid-β, and tau. Emerging evidence suggests that these misfolded aggregates are prion-like proteins that induce pathological cell-to-cell spreading, which is a major driver in pathogenesis. Additional factors that can further affect pathology spreading include oxidative stress, mitochondrial damage, inflammation, and cell death. Nanomaterials present advantages over traditional chemical or biological therapeutic approaches at targeting these specific mechanisms. They can have intrinsic properties that lead to a decrease in oxidative stress or an ability to bind and disaggregate fibrils. Additionally, nanomaterials enhance transportation across the blood-brain barrier, are easily functionalized, increase drug half-lives, protect cargo from immune detection, and provide a physical structure that can support cell growth. This review highlights emergent nanomaterials with these advantages that target oxidative stress, the fibrillization process, inflammation, and aid in regenerative medicine for both PD and AD.
Collapse
Affiliation(s)
- Amanda Li
- Washington University School of Medicine, St. Louis, MO, United States
| | - Joel Tyson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Shivni Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meer Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sruthi Katakam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, China
| |
Collapse
|
13
|
Krishnan UM. Biomaterials in the treatment of Parkinson's disease. Neurochem Int 2021; 145:105003. [PMID: 33657427 DOI: 10.1016/j.neuint.2021.105003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a neurodegenerative disease, the treatment of which is mainly centred around supplementation of dopamine. Additional targets have been identified and newer chemotherapeutic agents have been introduced but their clinical efficacy is limited due to solubility, bioavailability issues and inability to cross the blood-brain barrier (BBB). A wide range of biomaterials ranging from biomolecules, polymers, inorganic metal and metal oxide nanoparticles have been employed to assist the delivery of these therapeutic agents into the brain. Additionally, strategies to deliver cells to restore the dopaminergic neurons also have shown promise due to the integration of biocompatible materials that aid neurogenesis through a combination of topographical, chemical and mechanical cues. Neuroprosthetics is an area that may become significant in treatment of motor deficits associated with Parkinson's disease, and involves development of highly conductive and robust electrode materials with excellent cytocompatibility. This review summarizes the major role played by biomaterials in design of novel strategies and in the improvement of existing therapeutic methods as well as the emerging trends in this domain.
Collapse
Affiliation(s)
- Uma Maheswari Krishnan
- School of Arts, Science & Humanities, Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, 613 401, India.
| |
Collapse
|