1
|
Poteaux P, Ripoll C, Sarrazin A, Blanchard MP, Guillou-Duvoid A, Gourbal B, Hirbec H, Duval D. Breaking Biomphalaria black box by in situ revelation of fluorescent Schistosoma mansoni parasites. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109800. [PMID: 39096981 DOI: 10.1016/j.fsi.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Tissue clearing is an old-fashioned method developed in the 1900's and used to turn an opaque biological object into a 3D visualizable transparent structure. Developed and diversified over the last decade, this method is most of the time applied to mammals' tissues, and especially mouse and human tissues for cytological, histological and pathophysiological studies. Through autofluorescence, immunofluorescence, in situ hybridization, intercalating agents, fluorescent transfection markers or fluorescent particle uptake, optically cleared samples can be monitored to discover new biological structures and cellular interactions through 3D-visualization, which can be more challenging in some extend through classical histological methods. Most of the tissue clearing procedures have been developed for specific applications like endogenous fluorescence visualization, immunolabeling or for revealing specific organs. Thus, choosing the adapted protocol may be empirical for non-model species, especially for mollusks for which very little related literature is available. Herein, we suggest an effective optical tissue clearing procedure for the freshwater snail Biomphalaria glabrata, known as the intermediate host of the human parasite Schistosoma mansoni. This clearing procedure involves solvents with a minimal toxicity, preserves the endogenous fluorescence of labeled parasites inside snail tissues and is compatible with an immunolabeling procedure.
Collapse
Affiliation(s)
- Pierre Poteaux
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, 58 avenue Paul Alduy, 66860, Perpignan, France.
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Amélie Sarrazin
- MRI, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Marie-Pierre Blanchard
- MRI, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Anne Guillou-Duvoid
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Benjamin Gourbal
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Hélène Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - David Duval
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, 58 avenue Paul Alduy, 66860, Perpignan, France
| |
Collapse
|
2
|
Tamura I, Sakamoto DM, Yi B, Saito Y, Yamada N, Morimoto J, Takakusagi Y, Kuroda M, Kubota SI, Yatabe H, Kobayashi M, Harada H, Tainaka K, Sando S. Click3D: Click reaction across deep tissues for whole-organ 3D fluorescence imaging. SCIENCE ADVANCES 2024; 10:eado8471. [PMID: 39018410 PMCID: PMC466963 DOI: 10.1126/sciadv.ado8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Click chemistry offers various applications through efficient bioorthogonal reactions. In bioimaging, pretargeting strategies have often been used, using click reactions between molecular probes with a click handle and reporter molecules that make them observable. Recent efforts have integrated tissue-clearing techniques with fluorescent labeling through click chemistry, allowing high-resolution three-dimensional fluorescence imaging. Nevertheless, these techniques have faced a challenge in limited staining depth, confining their use to imaging tissue sections or partial organs. In this study, we introduce Click3D, a method for thoroughly staining whole organs using click chemistry. We identified click reaction conditions that improve staining depth with our custom-developed assay. The Click3D protocol exhibits a greater staining depth compared to conventional methods. Using Click3D, we have successfully achieved whole-kidney imaging of nascent RNA and whole-tumor imaging of hypoxia. We have also accomplished whole-brain imaging of hypoxia by using the clickable hypoxia probe, which has a small size and, therefore, has high permeability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daichi M. Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masafumi Kuroda
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shimpei I. Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Hiroyuki Yatabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Zhao Z, Jiang M, He C, Yin W, Feng Y, Wang P, Ying L, Fu T, Su D, Peng R, Tan W. Enhancing Specific Fluorescence In Situ Hybridization with Quantum Dots for Single-Molecule RNA Imaging in Formalin-Fixed Paraffin-Embedded Tumor Tissues. ACS NANO 2024; 18:9958-9968. [PMID: 38547522 DOI: 10.1021/acsnano.3c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Single-molecule fluorescence in situ hybridization (smFISH) represents a promising approach for the quantitative analysis of nucleic acid biomarkers in clinical tissue samples. However, low signal intensity and high background noise are complications that arise from diagnostic pathology when performed with smFISH-based RNA imaging in formalin-fixed paraffin-embedded (FFPE) tissue specimens. Moreover, the associated complex procedures can produce uncertain results and poor image quality. Herein, by combining the high specificity of split DNA probes with the high signal readout of ZnCdSe/ZnS quantum dot (QD) labeling, we introduce QD split-FISH, a high-brightness smFISH technology, to quantify the expression of mRNA in both cell lines and clinical FFPE tissue samples of breast cancer and lung squamous carcinoma. Owing to its high signal-to-noise ratio, QD split-FISH is a fast, inexpensive, and sensitive method for quantifying mRNA expression in FFPE tumor tissues, making it suitable for biomarker imaging and diagnostic pathology.
Collapse
Affiliation(s)
- Zeyin Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengyuan Jiang
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen He
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wenjuan Yin
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peng Wang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lisha Ying
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Gu Q, Sarkar S, Raymick B, Kanungo J. Combining tissue clearing and Fluoro-Jade C labeling for neurotoxicity assessments. Exp Biol Med (Maywood) 2023; 248:605-611. [PMID: 37208909 PMCID: PMC10350804 DOI: 10.1177/15353702231165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Tissue clearing refers to laboratory methods that make tissue transparent by chemical means. This approach allows the labeling, visualization, and analysis of specific targets without cutting the tissue into sections, thereby maintaining three-dimensional architecture. More than two dozen tissue-clearing methods have been developed by different research teams to date. While tissue clearing has been successfully applied in several studies concerning basic science or diseases, little is known about the utilization of tissue clearing for neurotoxicity evaluation. In this study, several tissue-clearing methods were combined with Fluoro-Jade C (FJ-C), a standard marker of neurodegeneration. The results suggest that some but not all tissue-clearing media are compatible with the FJ-C fluorophore. By utilizing a neurotoxicity animal model, the results further suggest that FJ-C labeling can be combined with tissue clearing for neurotoxicity assessments. This approach has the potential to be expanded further by combining multicolor labeling of molecular targets involved in the development and/or mechanisms of neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bryan Raymick
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Castellanos-Montiel MJ, Chaineau M, Franco-Flores AK, Haghi G, Carrillo-Valenzuela D, Reintsch WE, Chen CXQ, Durcan TM. An Optimized Workflow to Generate and Characterize iPSC-Derived Motor Neuron (MN) Spheroids. Cells 2023; 12:cells12040545. [PMID: 36831212 PMCID: PMC9954647 DOI: 10.3390/cells12040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A multitude of in vitro models based on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) have been developed to investigate the underlying causes of selective MN degeneration in motor neuron diseases (MNDs). For instance, spheroids are simple 3D models that have the potential to be generated in large numbers that can be used across different assays. In this study, we generated MN spheroids and developed a workflow to analyze them. To start, the morphological profiling of the spheroids was achieved by developing a pipeline to obtain measurements of their size and shape. Next, we confirmed the expression of different MN markers at the transcript and protein levels by qPCR and immunocytochemistry of tissue-cleared samples, respectively. Finally, we assessed the capacity of the MN spheroids to display functional activity in the form of action potentials and bursts using a microelectrode array approach. Although most of the cells displayed an MN identity, we also characterized the presence of other cell types, namely interneurons and oligodendrocytes, which share the same neural progenitor pool with MNs. In summary, we successfully developed an MN 3D model, and we optimized a workflow that can be applied to perform its morphological, gene expression, protein, and functional profiling over time.
Collapse
|
6
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
7
|
Sun T, Li Y, Förstera B, Stanic K, Lu S, Steffens S, Yin C, Ertürk A, Megens RTA, Weber C, Habenicht A, Mohanta SK. Tissue Clearing Approaches in Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:747-763. [PMID: 35237999 DOI: 10.1007/978-1-0716-1924-7_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in cardiovascular research have led to a more comprehensive understanding of molecular mechanisms of atherosclerosis. It has become apparent that the disease involves three layers of the arterial wall: the intima, the media, and a connective tissue coat termed the adventitia. It is also now appreciated that arteries are surrounded by adipose and neuronal tissues. In addition, adjacent to and within the adventitia, arteries are embedded in a loose connective tissue containing blood vessels (vasa vasora) and lymph vessels, artery-draining lymph nodes and components of the peripheral nervous system, including periarterial nerves and ganglia. During atherogenesis, each of these tissues undergoes marked structural and cellular alterations. We propose that a better understanding of these cell-cell and cell-tissue interactions may considerably advance our understanding of cardiovascular disease pathogenesis. Methods to acquire subcellular optical access to the intact tissues surrounding healthy and diseased arteries are urgently needed to achieve these aims. Tissue clearing is a landmark next-generation, three-dimensional (3D) microscopy technique that allows to image large-scale hitherto inaccessible intact deep tissue compartments. It allows for detailed reconstructions of arteries by a combination of labelling, clearing, advanced microscopies and other imaging and data-analysis tools. Here, we describe two distinct tissue clearing protocols; solvent-based modified three-dimensional imaging of solvent-cleared organs (3DISCO) clearing and another using aqueous-based 2,2'-thiodiethanol (TDE) clearing, both of which complement each other.
Collapse
Affiliation(s)
- Ting Sun
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Yuanfang Li
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Karen Stanic
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Shu Lu
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany. .,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
8
|
Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021; 141:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Reconstruction of the vasculature of intact tissues/organs down to the capillary level is essential for understanding the development and remodeling of vascular networks under physiological and pathological conditions. Optical imaging techniques can provide sufficient resolution to distinguish small vessels with several microns, but the imaging depth is somewhat limited due to the high light scattering of opaque tissue. Recently, various tissue optical clearing methods have been developed to overcome light attenuation and improve the imaging depth both for ex-vivo and in-vivo visualizations. Tissue clearing combined with vessel labeling techniques and advanced optical tomography enables successful mapping of the vasculature of different tissues/organs, as well as dynamically monitoring vessel function under normal and pathological conditions. Here, we briefly introduce the commonly-used labeling strategies for entire vascular networks, the current tissue optical clearing techniques available for various tissues, as well as the advanced optical imaging techniques for fast, high-resolution structural and functional imaging for blood vessels. We also discuss the applications of these techniques in the 3D visualization of vascular networks in normal tissues, and the vascular remodeling in several typical pathological models in clinical research. This review is expected to provide valuable insights for researchers to study the potential mechanisms of various vessel-associated diseases using tissue optical clearing pipeline.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Zhan Y, Wu H, Liu L, Lin J, Zhang S. Organic solvent-based tissue clearing techniques and their applications. JOURNAL OF BIOPHOTONICS 2021; 14:e202000413. [PMID: 33715302 DOI: 10.1002/jbio.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Revealing the true structure of tissues and organs with tissue slicing technology is difficult since images reconstructed in three dimensions are easily distorted. To address the limitations in tissue slicing technology, tissue clearing has been invented and has recently achieved significant progress in three-dimensional imaging. Currently, this technology can mainly be divided into two types: aqueous clearing methods and solvent-based clearing methods. As one of the important parts of this technology, organic solvent-based tissue clearing techniques have been widely applied because of their efficient clearing speed and high clearing intensity. This review introduces the primary organic solvent-based tissue clearing techniques and their applications.
Collapse
Affiliation(s)
- Yanjing Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|