1
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
2
|
Olbrich K, Setkowicz Z, Kawon K, Czyzycki M, Janik-Olchawa N, Carlomagno I, Aquilanti G, Chwiej J. Vibrational spectroscopy methods for investigation of the animal models of glioblastoma multiforme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123230. [PMID: 37586277 DOI: 10.1016/j.saa.2023.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.
Collapse
Affiliation(s)
- Karolina Olbrich
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kamil Kawon
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Mateusz Czyzycki
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | | | | | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
3
|
Wilk A, Drozdz A, Olbrich K, Janik-Olchawa N, Setkowicz Z, Chwiej J. Influence of measurement mode on the results of glioblastoma multiforme analysis with the FTIR microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122086. [PMID: 36423418 DOI: 10.1016/j.saa.2022.122086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fourier Transform Infrared (FTIR) microspectroscopy is well known for its effectiveness in spectral and biochemical analyses of various materials. It enables to determine the sample biochemical composition by assigning detected frequencies, characteristic for functional groups of main biological macromolecules. In analysis of tissue sections one of two measurement modes, namely transmission and transflection, is usually applied. The first one has relatively straightforward geometry, hence it is considered to be more precise and accurate. However, IR-transparent media are very fragile and expensive. Transflection does not require expensive substrates, but is more prone to disruptive influence of Mie scattering as well as electric field standing wave effect. The excessive comparison of spectra' characteristics, obtained via both measurement modes, was performed in this paper. By the means of Mann-Whitney non-parametrical U test and PCA, the comparison of results obtained with both modes and assessment of usefulness of IR spectra obtained with transmission and transflection modes to differentiate between healthy and GBM-affected tissue, were performed. The main objective of the presented research is to compare the results of FTIR analysis of unfixed biological samples performed with transflection and transmission mode. In frame of the study we demonstrated the discrepancies between results of biochemical analysis performed based on data obtained with transmission and transflection. Such observation suggests that caution should be taken in drawing conclusions from the results obtained with transflection geometry, as its more prone to disruptive effects. Despite that, IR spectra developed with both modes allowed to distinguish GBM area from healthy tissue, which proves their diagnostic potential. Especially, application of the ME-EMSC correction of spectra before PCA enhances the performance of both methods to distinguish the analysed tissue areas.
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Agnieszka Drozdz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Karolina Olbrich
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Natalia Janik-Olchawa
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Haşimoğlu Z, Erbayraktar Z, Özer E, Erbayraktar S, Erkmen T. Quantitative Analysis of Serum Zinc Levels in Primary Brain Tumor Patients. Biol Trace Elem Res 2022; 200:568-573. [PMID: 33826072 DOI: 10.1007/s12011-021-02698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Although the close relationships between most of the trace elements and tumor formation mechanisms are very well-defined, studies on some elements such as zinc are still ongoing. When examining studies on brain tumors, it was observed that studies investigating the role played by serum zinc levels on tumor etiology and prognosis have gained momentum. In this study, we investigate the relationship between different brain tumor types and serum zinc levels by quantitatively analyzing serum zinc levels in patients with primary brain tumors. In this study, we measured serum zinc levels of 33 brain tumor patients as well as 35 healthy individuals serving as a control group. Metal concentrations were measured using atomic absorption spectrophotometry. Serum zinc levels were lower in patients with primary brain tumors compared to control group (p < 0.05). Additionally, patients' serum zinc levels were significantly different according to their brain tumor types and also according to their age (p < 0.05). Our findings suggest that brain tumor patients' serum zinc levels may play a role in tumor etiology, typology, and prognosis.
Collapse
Affiliation(s)
- Zeynep Haşimoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | - Zübeyde Erbayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Erdener Özer
- Department of Medical Pathology, Dokuz Eylül University Hospital, Izmir, Turkey
| | - Serhat Erbayraktar
- Department of Neurosurgery, Dokuz Eylül University Hospital, Izmir, Turkey
| | - Tuğba Erkmen
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
5
|
Altered Elemental Distribution in Male Rat Brain Tissue as a Predictor of Glioblastoma Multiforme Growth-Studies Using SR-XRF Microscopy. Int J Mol Sci 2022; 23:ijms23020703. [PMID: 35054889 PMCID: PMC8775692 DOI: 10.3390/ijms23020703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.
Collapse
|
6
|
Zhang Z, Ma J, Xu Y, Zhang H. Observation of the impact of the eight-step process combined with the four-track crossover quality control applied to patients with glioma surgery: a randomised trial. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:696. [PMID: 33987394 PMCID: PMC8106022 DOI: 10.21037/atm-21-1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background At present, surgery is the main treatment for patients with glioma, but there are certain risks in the operation. The traction and stress reaction of related brain tissue during surgery can cause complications such as cerebral edema, which adversely affects the prognosis of patients. The purpose of the present study was to explore the effect of an eight-step process combined with four-track quality control applied to patients undergoing glioma surgery. Methods A total of 122 patients undergoing glioma surgery admitted to our hospital from March 2017 to March 2020 were selected and divided into two groups according to the random number table method, each with 61 cases. The control group underwent routine intervention after surgery and the observation group underwent an eight-step process combined with four-track cross-over quality control intervention after surgery. The postoperative rehabilitation effects, cancer-related fatigue, changes in quality of life, and the incidence of complications before and after intervention were compared between the two groups. Results The time of catheter removal, the time of first eating, the time of getting out of bed, and the length of hospital stay of the observation group were shorter than those of the control group (P<0.05). In the observation group cognitive fatigue, physical fatigue, and emotional fatigue scores were lower than those of the control group after intervention (P<0.05) and the quality-of-life scores of the observation group after intervention were higher than those of the control group (P<0.05). The total incidence of complications in the observation group was lower than that of the control group (P<0.05). Conclusions The eight-step process combined with four-track quality control applied to patients undergoing glioma surgery can reduce cancer-related fatigue, improve quality of life, reduce complications, and promote speedy recovery.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|