Zhang X, Zhang J, Wang Y, Wang M, Tang M, Lin Y, Liu Q. Epigenetic Modifications and Neurodegenerative Disorders: A Biochemical Perspective.
ACS Chem Neurosci 2022;
13:177-184. [PMID:
35000390 DOI:
10.1021/acschemneuro.1c00701]
[Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methylations in living cells are methyl groups attached to amino acids, DNA, RNA, and so on. However, their biochemical roles have not been fully defined. A theory has been postulated that methylation leads to hyperconjugation, and the electron-donating feature weakens a nearby chemical bond, which increases the bond length of C4-N4 of 5-methylcytosine, therefore weakening the C4-N4 bond and resulting in stronger protonation or hydrogen bonding of the N4 nitrogen atom. Protonation can give rise to the generation of mutagenic and carcinogenic strong acids such as HCl, which are also capable of solubilizing stressful, insoluble, and stiff salts. Insoluble and rigid salts such as calcium oxalate and/or calcium phosphate were recently proposed as a primary cause of some neurodegenerative disorders. Protonation of nitrogen atoms in 5-methylcytosine enhances the interaction with negatively charged phosphate groups and contributes to the formation of compact heterochromatin. The electronegativity of the oxygen atoms in the modifications of 5-hydroxymethylcytosine or 5-formylcytosine can shorten the lengths of adjacent bonds with no increase of cation affinity in N4. The carboxyl group in 5-carboxylcytosine is a weak acid capable of antagonizing mutagenic HCl and modestly helping solubilize insoluble salts. Electron delocalization of the methyl group in N4-methylcytosine results in a lower affinity of N4 to cations. The positive charge at N3 in the resonance structure of 3-methylcytosine is lessened by the electron-donating attribute of the methyl group attached to the N3 atom, consequently reducing acid formation. The electron delocalization of three methyl groups decreases the positive charge in the amino nitrogen in the side group of lysine 4 in histone H3, weakening interactions with phosphate groups and consequently activating gene expression. The carbonyl oxygen in 8-oxo-7,8-dihydroguanine draws protons and accumulates HCl, accounting for its moderate mutation propensity and potential capacity to solubilize stiff salts. The biochemical insight will further our understanding on the crosstalk of genetics and epigenetics in the etiology of neurodegenerative diseases.
Collapse