1
|
Li F, Jia Y, Fang J, Gong L, Zhang Y, Wei S, Wu L, Jiang P. Neuroprotective Mechanism of MOTS-c in TBI Mice: Insights from Integrated Transcriptomic and Metabolomic Analyses. Drug Des Devel Ther 2024; 18:2971-2987. [PMID: 39050800 PMCID: PMC11268520 DOI: 10.2147/dddt.s460265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a condition characterized by structural and physiological disruptions in brain function caused by external forces. However, as the highly complex and heterogenous nature of TBI, effective treatments are currently lacking. Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) has shown notable antinociceptive and anti-inflammatory effects, yet its detailed neuroprotective effects and mode of action remain incompletely understood. This study investigated the neuroprotective effects and the underlying mechanisms of MOTS-c. Methods Adult male C57BL/6 mice were randomly divided into three groups: control (CON) group, MOTS-c group and TBI group. Enzyme-linked immunosorbent assay (ELISA) kit method was used to measure the expression levels of MOTS-c in different groups. Behavioral tests were conducted to assess the effects of MOTS-c. Then, transcriptomics and metabolomics were performed to search Differentially Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs), respectively. Moreover, the integrated transcriptomics and metabolomics analysis were employed using R packages and online Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results ELISA kit method showed that TBI resulted in a decrease in the expression of MOTS-c. and peripheral administration of MOTS-c could enter the brain tissue after TBI. Behavioral tests revealed that MOTS-c improved memory, learning, and motor function impairments in TBI mice. Additionally, transcriptomic analysis screened 159 differentially expressed genes. Metabolomic analysis identified 491 metabolites with significant differences. Integrated analysis found 14 KEGG pathways, primarily related to metabolic pathways. Besides, several signaling pathways were enriched, including neuroactive ligand-receptor interaction and retrograde endocannabinoid signaling. Conclusion TBI reduced the expression of MOTS-c. MOTS-c reduced inflammatory responses, molecular damage, and cell death by down-regulating macrophage migration inhibitory factor (MIF) expression and activating the retrograde endocannabinoid signaling pathway. In addition, MOTS-c alleviated the response to hypoxic stress and enhanced lipid β-oxidation to provide energy for the body following TBI. Overall, our study offered new insights into the neuroprotective mechanisms of MOTS-c in TBI mice.
Collapse
Affiliation(s)
- Fengfeng Li
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yang Jia
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Jun Fang
- Anesthesiology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Linqiang Gong
- Gastroenterology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yazhou Zhang
- Foot and Ankle Surgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Shanshan Wei
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
2
|
Yang L, Li M, Liu Y, Bai Y, Yin T, Chen Y, Jiang J, Liu S. MOTS-c is an effective target for treating cancer-induced bone pain through the induction of AMPK-mediated mitochondrial biogenesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1323-1339. [PMID: 38716540 PMCID: PMC11532206 DOI: 10.3724/abbs.2024048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 10/17/2024] Open
Abstract
Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.
Collapse
Affiliation(s)
- Long Yang
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Yucheng Liu
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Yang Bai
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Tianyu Yin
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Yangyang Chen
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Su Liu
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| |
Collapse
|
3
|
Wang Z, Yang L, Xu L, Liao J, Lu P, Jiang J. Central and peripheral mechanism of MOTS-c attenuates pain hypersensitivity in a mice model of inflammatory pain. Neurol Res 2024; 46:165-177. [PMID: 37899006 DOI: 10.1080/01616412.2023.2258584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Inflammatory pain is caused by damaged tissue or noxious stimuli, accompanied by the release of inflammatory mediators that often leads to severe hyperalgesia and allodynia with limited therapy options. Recently, a novel mitochondrial-derived peptide (named MOTS-c) was reported to regulate obesity, metabolic homeostasis and inflammatory response. The aim of this study was to investigate the effects of MOTS-c and its related regulatory mechanisms involved in inflammatory pain. METHODS Male Kunming mice (8-10 weeks-old) were intraplantar injected with formalin, capsaicin, λ-Carrageenan and complete Freund adjuvant (CFA) to establish acute and chronic inflammatory pain. The effects of MOTS-c on the above inflammatory pain mice and its underlying mechanisms were examined by behavioral tests, quantitative polymerase chain reaction (qPCR), western blotting, enzyme linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and immunofluorescence (IF). RESULTS Behavioral experiments investigated the potential beneficial effects of MOTS-c on multiple acute and chronic inflammatory pain in mice. The results showed that MOTS-c treatment produced potent anti-allodynic effects in formalin-induced acute inflammatory pain, capsaicin-induced nocifensive behaviors and λ-Carrageenan/CFA-induced chronic inflammatory pain model. Further mechanistic studies revealed that central MOTS-c treatment significantly ameliorated CFA-evoked the release of inflammatory factors and activation of glial cells and neurons in the spinal dorsal horn. Moreover, peripheral MOTS-c treatment reduced CFA-evoked inflammatory responses in the surface structure of hindpaw skin, accompanied by inhibiting excitation of peripheral calcitonin gene-related peptide (CGRP) and P2X3 nociceptive neurons. CONCLUSIONS The present study indicates that MOTS-c may serve as a promising therapeutic target for inflammatory pain.
Collapse
Affiliation(s)
- Zhe Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Long Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingfei Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinglei Liao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
He J, Jin Y, He C, Li Z, Yu W, Zhou J, Luo R, Chen Q, Wu Y, Wang S, Song Z, Cheng S. Danggui Shaoyao San: comprehensive modulation of the microbiota-gut-brain axis for attenuating Alzheimer's disease-related pathology. Front Pharmacol 2024; 14:1338804. [PMID: 38283834 PMCID: PMC10811133 DOI: 10.3389/fphar.2023.1338804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, currently lacks effective clinical therapeutics. Traditional Chinese Medicine (TCM) holds promising potential in AD treatment, exemplified by Danggui Shaoyao San (DSS), a TCM formulation. The precise therapeutic mechanisms of DSS in AD remain to be fully elucidated. This study aims to uncover the therapeutic efficacy and underlying mechanisms of DSS in AD, employing an integrative approach encompassing gut microbiota and metabolomic analyses. Methods: Thirty Sprague-Dawley (SD) rats were allocated into three groups: Blank Control (Con), AD Model (M), and Danggui Shaoyao San (DSS). AD models were established via bilateral intracerebroventricular injections of streptozotocin (STZ). DSS was orally administered at 24 g·kg-1·d-1 (weight of raw herbal materials) for 14 days. Cognitive functions were evaluated using the Morris Water Maze (MWM) test. Pathological alterations were assessed through hematoxylin and eosin (HE) staining. Bloodstream metabolites were characterized, gut microbiota profiled through 16S rDNA sequencing, and cortical metabolomics analyzed. Hippocampal proinflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using RT-qPCR, and oxidative stress markers (SOD, CAT, GSH-PX, MDA) in brain tissues were measured with biochemical assays. Results: DSS identified a total of 1,625 bloodstream metabolites, predominantly Benzene derivatives, Carboxylic acids, and Fatty Acyls. DSS significantly improved learning and spatial memory in AD rats and ameliorated cerebral tissue pathology. The formulation enriched the probiotic Ligilactobacillus, modulating metabolites like Ophthalmic acid (OA), Phosphocreatine (PCr), Azacridone A, Inosine, and NAD. DSS regulated Purine and Nicotinate-nicotinamide metabolism, restoring balance in the Candidatus Saccharibacteria-OA interplay and stabilizing gut microbiota-metabolite homeostasis. Additionally, DSS reduced hippocampal IL-1β, IL-6, TNF-α expression, attenuating the inflammatory state. It elevated antioxidative enzymes (SOD, CAT, GSH-PX) while reducing MDA levels, indicating diminished oxidative stress in AD rat brains. Conclusion: DSS addresses AD pathology through multifaceted mechanisms, encompassing gut microbiome regulation, specific metabolite modulation, and the mitigation of inflammation and oxidative stress within the brain. This holistic intervention through the Microbial-Gut-Brain Axis (MGBA) underscores DSS's potential as an integrative therapeutic agent in combatting AD.
Collapse
Affiliation(s)
- Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yijie Jin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixiao Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shiwei Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Office of Science and Technology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Xu L, Tang X, Yang L, Chang M, Xu Y, Chen Q, Lu C, Liu S, Jiang J. Mitochondria-derived peptide is an effective target for treating streptozotocin induced painful diabetic neuropathy through induction of activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1alpha -mediated mitochondrial biogenesis. Mol Pain 2024; 20:17448069241252654. [PMID: 38658141 PMCID: PMC11113074 DOI: 10.1177/17448069241252654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.
Collapse
Affiliation(s)
- Lingfei Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xihui Tang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuqing Xu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingsong Chen
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Xiao J, Zhang Q, Shan Y, Ye F, Zhang X, Cheng J, Wang X, Zhao Y, Dan G, Chen M, Sai Y. The Mitochondrial-Derived Peptide (MOTS-c) Interacted with Nrf2 to Defend the Antioxidant System to Protect Dopaminergic Neurons Against Rotenone Exposure. Mol Neurobiol 2023; 60:5915-5930. [PMID: 37380822 DOI: 10.1007/s12035-023-03443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
MOTS-c is a 16-amino acid mitochondrial-derived peptide reported to be involved in regulating energy metabolism. However, few studies have reported the role of MOTS-c on neuron degeneration. In this study, it was aimed to explore the action of MOTS-c in rotenone-induced dopaminergic neurotoxicity. In an in vitro study, it was observed that rotenone could influence the expression and localization of MOTS-c significantly in PC12 cells, with more MOTS-c translocating into the nucleus from mitochondria. Further study showed that the translocation of MOTS-c from the mitochondria into the nucleus could directly interact with Nrf2 to regulate HO-1 and NQO1 expression in PC12 cells exposed to rotenone, which had been suggested to be involved in the antioxidant defense system. In vivo and in vitro experiments demonstrated that exogenous MOTS-c pretreatment could protect PC12 cells and rats from mitochondrial dysfunction and oxidative stress induced by rotenone. Moreover, MOTS-c pretreatment significantly decreased the loss of TH, PSD95, and SYP protein expression in the striatum of rats exposed to rotenone. In addition, MOTS-c pretreatment could clearly alleviate the downregulated expression of Nrf2, HO-1, and NQO1, as well as the upregulated Keap1 protein expression in the striatum of rotenone-treated rats. Taken together, these findings suggested that MOTS-c could directly interact with Nrf2 to activate the Nrf2/HO-1/NQO1 signal pathway to defend the antioxidant system to prevent dopaminergic neurons from rotenone-induced oxidative stress and neurotoxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Qifu Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yaohui Shan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jin Cheng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yuanpeng Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingliang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Fu H, Zhou J, Li S, Zhang Y, Chen Z, Yang Y, Li A, Wang D. Isoflurane impairs olfaction by increasing neuronal activity in the olfactory bulb. Acta Physiol (Oxf) 2023; 239:e14009. [PMID: 37330999 DOI: 10.1111/apha.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
AIM General anesthesia can induce cognitive deficits in both humans and rodents, correlating with pathological alterations in the hippocampus. However, whether general anesthesia affects olfactory behaviors remains controversial as clinical studies have produced inconsistent results. Therefore, we aimed to investigate how olfactory behaviors and neuronal activity are affected by isoflurane exposure in adult mice. METHODS The olfactory detection test, olfactory sensitivity test, and olfactory preference/avoidance test were used to examine olfactory function. In vivo electrophysiology was performed in awake, head-fixed mice to record single-unit spiking and local field potentials in the olfactory bulb (OB). We also performed patch-clamp recordings of mitral cell activity. For morphological studies, immunofluorescence and Golgi-Cox staining were applied. RESULTS Repeated exposure to isoflurane impaired olfactory detection in adult mice. The main olfactory epithelium, the first region exposed to anesthetics, displayed increased proliferation of basal stem cells. In the OB, a crucial hub for olfactory processing, repeated isoflurane exposure increased the odor responses of mitral/tufted cells. Furthermore, the odor-evoked high gamma response was decreased after isoflurane exposure. Whole-cell recordings further indicated that repeated isoflurane exposure increased the excitability of mitral cells, which may be due to weakened inhibitory input in isoflurane-exposed mice. In addition, elevated astrocyte activation and glutamate transporter-1 expression in the OB were observed in isoflurane-exposed mice. CONCLUSIONS Our findings indicate that repeated isoflurane exposure impairs olfactory detection by increasing neuronal activity in the OB in adult mice.
Collapse
Affiliation(s)
- Hanyu Fu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jingwei Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- Schools of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhiyun Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yingying Yang
- Schools of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
9
|
Zhang Z, Chen D, Du K, Huang Y, Li X, Li Q, Lv X. MOTS-c: A potential anti-pulmonary fibrosis factor derived by mitochondria. Mitochondrion 2023:S1567-7249(23)00052-1. [PMID: 37307934 DOI: 10.1016/j.mito.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a serious lung disease characterized by diffuse alveolitis and disruption of alveolar structure, with a poor prognosis and unclear etiopathogenesis. While ageing, oxidative stress, metabolic disorders, and mitochondrial dysfunction have been proposed as potential contributors to the development of PF, effective treatments for this condition remain elusive. However, Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), a peptide encoded by the mitochondrial genome, has shown promising effects on glucose and lipid metabolism, cellular and mitochondrial homeostasis, as well as the reduction of systemic inflammatory responses, and is being investigated as a potential exercise mimetic. Additionally, dynamic expression changes of MOTS-c have been closely linked to ageing and ageing-related diseases, indicating its potential as an exercise mimetic. Therefore, the review aims to comprehensively analyze the available literature on the potential role of MOTS-c in improving PF development and to identify specific therapeutic targets for future treatment strategies.
Collapse
Affiliation(s)
- Zewei Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Dongmei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Kaili Du
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yaping Huang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xingzhe Li
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Quwen Li
- Department of Fujian Zoonosis Research Key Laboratory, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, China
| | - Xiaoting Lv
- Department of respiratory and critical care medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Department of respiratory and critical care medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Institute of Respiratory Disease, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
10
|
Lu P, Li X, Li B, Li X, Wang C, Liu Z, Ji Y, Wang X, Wen Z, Fan J, Yi C, Song M, Wang X. The mitochondrial-derived peptide MOTS-c suppresses ferroptosis and alleviates acute lung injury induced by myocardial ischemia reperfusion via PPARγ signaling pathway. Eur J Pharmacol 2023:175835. [PMID: 37290680 DOI: 10.1016/j.ejphar.2023.175835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Acute lung injury (ALI) is a life-threatening complication of cardiac surgery that has a high rate of morbidity and mortality. Epithelial ferroptosis is believed to be involved in the pathogenesis of ALI. MOTS-c has been reported to play a role in regulating inflammation and sepsis-associated ALI. The purpose of this study is to observe the effect of MOTS-c on myocardial ischemia reperfusion (MIR)-induced ALI and ferroptosis. In humans, we used ELISA kits to investigate MOTS-c and malondialdehyde (MDA) levels in patients undergoing off-pump coronary artery bypass grafting (CABG). In vivo, we pretreated Sprague-Dawley rats with MOTS-c, Ferrostatin-1 and Fe-citrate(Ⅲ). We conducted Hematoxylin and Eosin (H&E) staining and detection of ferroptosis-related genes in MIR-induced ALI rats. In vitro, we evaluated the effect of MOTS-c on hypoxia regeneration (HR)-induced mouse lung epithelial-12 (MLE-12) ferroptosis and analyzed the expression of PPARγ through western blotting. We found that circulating MOTS-c levels were decreased in postoperative ALI patients after off-pump CABG, and that ferroptosis contributed to ALI induced by MIR in rats. MOTS-c suppressed ferroptosis and alleviated ALI induced by MIR, and the protective effect of MOTS-c- was dependent on PPARγ signaling pathway. Additionally, HR promoted ferroptosis in MLE-12 cells, and MOTS-c inhibited ferroptosis against HR through the PPARγ signaling pathway. These findings highlight the therapeutic potential of MOTS-c for improving postoperative ALI induced by cardiac surgery.
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery, PR China
| | - Xiaopei Li
- Department of Cardiovascular Surgery, PR China
| | - Ben Li
- Department of Cardiovascular Surgery, PR China
| | - Xiangyu Li
- Department of Cardiovascular Surgery, PR China
| | - Chufan Wang
- Department of Cardiovascular Surgery, PR China
| | | | - Yumeng Ji
- Department of Cardiovascular Surgery, PR China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, PR China
| | - Ziang Wen
- Department of Cardiovascular Surgery, PR China
| | - Jidan Fan
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Chenlong Yi
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, PR China; Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China.
| |
Collapse
|
11
|
Zhang Z, Guo L, Yang F, Peng S, Wang D, Lai X, Su B, Xie H. Adiponectin Attenuates Splenectomy-Induced Cognitive Deficits by Neuroinflammation and Oxidative Stress via TLR4/MyD88/NF-κb Signaling Pathway in Aged Rats. ACS Chem Neurosci 2023; 14:1799-1809. [PMID: 37141577 DOI: 10.1021/acschemneuro.2c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common adverse event after surgical trauma in elderly patients. The pathogenesis of PND is still unclear. Adiponectin (APN) is a plasma protein secreted by adipose tissue. We have reported that a decreased APN expression is associated with PND patients. APN may be a promising therapeutic agent for PND. However, the neuroprotective mechanism of APN in PND is still unclear. In this study, 18 month old male Sprague-Dawley rats were assigned to six groups: the sham, sham + APN (intragastric (i.g.) administration of 10 μg/kg/day for 20 days before splenectomy), PND (splenectomy), PND + APN, PND + TAK-242 (intraperitoneal (i.p.) administration of 3 mg/kg TAK-242), and PND + APN + lipopolysaccharide (LPS) (i.p. administration of 2 mg/kg LPS). We first found that APN gastric infusion significantly improved learning and cognitive function in the Morris water maze (MWM) test after surgical trauma. Further experiments indicated that APN could inhibit the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κb) p65 pathway to decrease the degree of oxidative damage (malondialdehyde (MDA) and superoxide dismutase (SOD)), microglia-mediated neuroinflammation (ionized calcium binding adapter molecule 1 (IBA1), caspase-1, tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6)), and apoptosis (p53, Bcl2, Bax, and caspase 3) in hippocampus. By using LPS-specific agonist and TAK-242-specific inhibitor, the involvement of TLR4 engagement was confirmed. APN intragastric administration exerts a neuroprotective effect against cognitive deficits induced by peripheral trauma, and the possible mechanisms include the inhibition of neuroinflammation, oxidative stress, and apoptosis, mediated by the suppression of the TLR4/MyD88/NF-κb signaling pathway. We propose that oral APN may be a promising candidate for PND treatment.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Lideng Guo
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Fei Yang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Shanpan Peng
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Di Wang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Xiawei Lai
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Baiqin Su
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Haihui Xie
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| |
Collapse
|
12
|
Dabravolski SA. Mitochondria-derived peptides in healthy ageing and therapy of age-related diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:197-215. [PMID: 37437978 DOI: 10.1016/bs.apcsb.2023.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by mitochondrial DNA and involved in various stress-protecting mechanisms. To date, eight mitochondrial-derived peptides have been identified: MOTS-c sequence is hidden in the 12 S rRNA gene (MT-RNR1), and the other 7 (humanin and small humanin-like peptides 1-6) are encoded by the 16 S rRNA (MT-RNR2) gene. While the anti-apoptotic, anti-inflammatory and cardioprotective activities of MDPs are well described, recent research suggests that MDPs are sensitive metabolic sensors, closely connected with mtDNA mutation-associated diseases and age-associated metabolic disorders. In this chapter, we focus on the recent progress in understanding the metabolo-protective properties of MDPs, their role in maintenance of the cellular and mitochondrial homeostasis associated with age-related diseases: Alzheimer's disease, cognitive decline, macular degeneration and cataracts. Also, we will discuss MDPs-based and MDPs-targeted interventions to treat age-related diseases and extend a healthy lifespan.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
13
|
Bahar MR, Tekin S, Beytur A, Onalan EE, Ozyalin F, Colak C, Sandal S. Effects of intracerebroventricular MOTS-c infusion on thyroid hormones and uncoupling proteins. Biol Futur 2023:10.1007/s42977-023-00163-6. [PMID: 37067760 DOI: 10.1007/s42977-023-00163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
This study was conducted to determine the possible effects of intracerebroventricular MOTS-c infusion on thyroid hormones and uncoupling proteins (UCPs) in rats. Forty male Wistar Albino rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 µM MOTS-c. Hypothalamus, blood, muscle, adipose tissues samples were collected for thyrotropin-releasing hormone (TRH), UCP1 and UCP3 levels were determined by the RT-PCR and western blot analysis. Serum thyroid hormone levels were determined by the ELISA assays. MOTS-c infusion was found to increase food consumption but it did not cause any changes in the body weight. MOTS-c decreased serum TSH, T3, and T4 hormone levels. On the other hand, it was also found that MOTS-c administration increased UCP1 and UCP3 levels in peripheral tissues. The findings obtained in the study show that central MOTS-c infusion is a directly effective agent in energy metabolism.
Collapse
Affiliation(s)
- Mehmet Refik Bahar
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey.
| | - Asiye Beytur
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ebru Etem Onalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Fatma Ozyalin
- Laboratory and Veterinary Health Program, Akcadag Vocational School, Malatya Turgut Ozal University, Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
14
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Wan W, Zhang L, Lin Y, Rao X, Wang X, Hua F, Ying J. Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. J Transl Med 2023; 21:36. [PMID: 36670507 PMCID: PMC9854231 DOI: 10.1186/s12967-023-03885-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
MOTS-c is a peptide encoded by the short open reading frame of the mitochondrial 12S rRNA gene. It is significantly expressed in response to stress or exercise and translocated to the nucleus, where it regulates the expression of stress adaptation-related genes with antioxidant response elements (ARE). MOTS-c mainly acts through the Folate-AICAR-AMPK pathway, thereby influencing energy metabolism, insulin resistance, inflammatory response, exercise, aging and aging-related pathologies. Because of the potential role of MOTS-c in maintaining energy and stress homeostasis to promote healthy aging, especially in view of the increasing aging of the global population, it is highly pertinent to summarize the relevant studies. This review summarizes the retrograde signaling of MOTS-c toward the nucleus, the regulation of energy metabolism, stress homeostasis, and aging-related pathological processes, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wei Wan
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Lieliang Zhang
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Yue Lin
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Xiuqing Rao
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Xifeng Wang
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Fuzhou Hua
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Jun Ying
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| |
Collapse
|
16
|
Orally administered MOTS-c analogue ameliorates dextran sulfate sodium-induced colitis by inhibiting inflammation and apoptosis. Eur J Pharmacol 2023; 939:175469. [PMID: 36528071 DOI: 10.1016/j.ejphar.2022.175469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract (GI). Currently, the treatment options for IBD are limited. It has been reported that a novel bioactive mitochondrial-derived peptide (MOTS-c) encoded in the mitochondrial 12S rRNA, suppresses inflammatory response by enhancing the phagocytosis of macrophages. The aim of this study was to investigate the protective effects of MOTS-c against dextran sulfate sodium (DSS)-induced colitis. The results showed that intraperitoneal (i.p.) administration of MOTS-c significantly ameliorated the symptoms of DSS-induced experimental colitis, such as body weight loss, colon length shortening, diarrhea, and histological damage. MOTS-c down-regulated the expression of pro-inflammatory cytokines, decreased the plasma levels of myeloperoxidase, and inhibited the activation of macrophages and recruitment of neutrophils. Moreover, treatment with MOTS-c exhibited anti-apoptotic effects and significantly suppressed the phosphorylation of AMPKα1/2, ERK, and JNK. Notably, oral administration of MOTS-c did not result in any significant improvements. Screening of cell penetrating peptides was performed, (PRR)5 was linked to the C-terminus of MOTS-c through a linker to synthesize a new molecule (termed MP) with better penetration into the colon epithelium. In vitro experiments revealed the longer half-life of MP than MOTS-c, and in vivo experiments showed that oral administration of MP significantly ameliorated DSS-induced colitis. CONCLUSION: The present results demonstrate a protective role of MOTS-c in experimental IBD.
Collapse
|
17
|
Yi X, Hu G, Yang Y, Li J, Jin J, Chang B. Role of MOTS-c in the regulation of bone metabolism. Front Physiol 2023; 14:1149120. [PMID: 37200834 PMCID: PMC10185875 DOI: 10.3389/fphys.2023.1149120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
Collapse
Affiliation(s)
- Xuejie Yi
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Junjie Jin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- *Correspondence: Bo Chang,
| |
Collapse
|
18
|
MOTS-c, the Most Recent Mitochondrial Derived Peptide in Human Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:ijms231911991. [PMID: 36233287 PMCID: PMC9570330 DOI: 10.3390/ijms231911991] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
MOTS-c, a 16 amino acid mitochondrial derived peptide, is encoded from the 12S rRNA region of the mitochondrial genome. Under stress conditions, MOTS-c translocates to the nucleus where it regulates a wide range of genes in response to metabolic dysfunction. It is colocalized to mitochondria in various tissues and is found in plasma, but the levels decline with age. Since MOTS-c has important cellular functions as well as a possible hormonal role, it has been shown to have beneficial effects on age-related diseases including Diabetes, Cardiovascular diseases, Osteoporosis, postmenopausal obesity and Alzheimer. Aging is characterized by gradual loss of (mitochondrial) metabolic balance, decreased muscle homeostasis and eventual diminished physical capability, which potentially can be reversed with MOTS-c treatment. This review examines the latest findings on biological effects of MOTS-c as a nuclear regulatory peptide and focuses on the role of MOTS-c in aging and age-related disorders, including mechanisms of action and therapeutic potential.
Collapse
|
19
|
Yin Y, Pan Y, He J, Zhong H, Wu Y, Ji C, Liu L, Cui X. The mitochondrial-derived peptide MOTS-c relieves hyperglycemia and insulin resistance in gestational diabetes mellitus. Pharmacol Res 2022; 175:105987. [PMID: 34798268 DOI: 10.1016/j.phrs.2021.105987] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/29/2023]
Abstract
The most common complication during pregnancy, gestational diabetes mellitus (GDM), can cause adverse pregnancy outcomes and result in the mother and infant having a higher risk of developing type 2 diabetes after pregnancy. However, existing therapies for GDM remain scant, with the most common being lifestyle intervention and appropriate insulin treatment. MOTS-c, a mitochondrial-derived peptide, can target skeletal muscle and enhance glucose metabolism. Here, we demonstrate that MOTS-c can be an effective treatment for GDM. A GDM mouse model was established by short term high-fat diet combined with low-dose streptozotocin (STZ) treatment while MOTS-c was administrated daily during pregnancy. GDM symptoms such as blood glucose and insulin levels, glucose and insulin tolerance, as well as reproductive outcomes were investigated. MOTS-c significantly alleviated hyperglycemia, improved insulin sensitivity and glucose tolerance, and reduced birth weight and the death of offspring induced by GDM. Similar to a previous study, MOTS-c also could activate insulin sensitivity in the skeletal muscle of GDM mice and elevate glucose uptake in vitro. In addition, we found that MOTS-c protects pancreatic β-cell from STZ-mediated injury. Taken together, our findings demonstrate that MOTS-c could be a promising strategy for the treatment of GDM.
Collapse
Affiliation(s)
- Yadong Yin
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yihui Pan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Jin He
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Hong Zhong
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yangyang Wu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Chenbo Ji
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Lan Liu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Xianwei Cui
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
20
|
Wu D, Kampmann E, Qian G. Novel Insights Into the Role of Mitochondria-Derived Peptides in Myocardial Infarction. Front Physiol 2021; 12:750177. [PMID: 34777013 PMCID: PMC8582487 DOI: 10.3389/fphys.2021.750177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are a new class of bioactive peptides encoded by small open reading frames (sORFs) within known mitochondrial DNA (mtDNA) genes. MDPs may affect the expression of nuclear genes and play cytoprotective roles against chronic and age-related diseases by maintaining mitochondrial function and cell viability in the face of metabolic stress and cytotoxic insults. In this review, we summarize clinical and experimental findings indicating that MDPs act as local and systemic regulators of glucose homeostasis, immune and inflammatory responses, mitochondrial function, and adaptive stress responses, and focus on evidence supporting the protective effects of MDPs against myocardial infarction. These insights into MDPs actions suggest their potential in the treatment of cardiovascular diseases and should encourage further research in this field.
Collapse
Affiliation(s)
- Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Enny Kampmann
- School of Life Sciences, City College of San Francisco, San Francisco, CA, United States
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|