1
|
Rahman SM, Dickerson I, Luebke AE. Loss of Calcitonin Gene Related Receptor component protein (RCP) in nervous system can bias "gepant" antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620369. [PMID: 39484482 PMCID: PMC11527201 DOI: 10.1101/2024.10.25.620369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
We examined calcitonin gene-related peptide (CGRP)'s effects on behavioral surrogates for motion-induced nausea and static imbalance in the nestinRCP (-/-), a novel mouse model that loses expression of receptor component protein (RCP) in the nervous system after tamoxifen induction. The assays used were the motion-induced thermoregulation and center of pressure (CoP) assays. Findings suggest CGRP's affects behavioral measures in the nestinRCP (-/-) similarly to littermate controls, since CGRP was observed to increase female sway and diminishes tail vasodilations to provocative motion in both sexes. However, the CGRP-receptor antagonist olcegepant did not antagonize CGRP's effects in the nestinRCP (-/-), whereas it was effective in littermate controls. Findings suggest RCP loss may change the sensitivity of the CGRP receptor and affect the efficacy of receptor antagonists. Significance Statement Research in calcitonin gene-related peptide (CGRP) has primarily focused on ligand- receptor interactions at the calcitonin-like receptor (CLR) and receptor activity-modifying unit 1 (RAMP1) subunits. However, the role of receptor component protein (RCP), which mediates signaling via the Gα-stimulatory pathway, is less understood. A novel tamoxifen-inducible mouse model, nestinRCP (-/-), was generated to study loss of RCP in CGRP signaling in the nervous system, and behavioral changes to motion-induced nausea and postural sway were studied after systemic injections of CGRP or CGRP co-delivered with migraine drugs. Findings from this study suggest the loss of CGRP-RCP can bias "gepant" antagonists like olcegepant, and may promote development of therapies to inhibit the RCP-CLR interactions.
Collapse
|
2
|
Nada H, Kim S, Jaemin C, Park S, Choi Y, Lee MY, Lee K. From pixels to druggable leads: A CADD strategy for the design and synthesis of potent DDR1 inhibitors. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108318. [PMID: 38991374 DOI: 10.1016/j.cmpb.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND OBJECTIVE While numerous in silico tools exist for target-based drug discovery, the inconsistent integration of in vitro data with predictive models hinders research and development productivity. This is particularly apparent during the Hit-to-Lead stage, where unreliable in-silico tools often lead to suboptimal lead selection. Herein, we address this challenge by presenting a CADD-guided pipeline that successfully integrates rational drug design with in-silico hits to identify a promising DDR1 lead. METHODS 2 × 1000 ns MD simulations along with their respective FEL and MMPBSA analyses were employed to guide the rational design and synthesis of 12 novel compounds which were evaluated for their DDR inhibition. RESULTS The molecular dynamics investigation of the initial hit led to the identification of key structural features within the DDR1 binding pocket. The identified key features were used to guide the rational design and synthesis of twelve novel derivatives. SAR analysis, biological evaluation, molecular dynamics, and free energy calculations were carried out for the synthesized derivatives to understand their mechanism of action. Compound 4c exhibited the strongest inhibition and selectivity for DDR1, with an IC50 of 0.11 µM. CONCLUSIONS The MD simulations led to the identification of a key hydrophobic groove in the DDR1 binding pocket. The integrated approach of SAR analysis with molecular dynamics led to the identification of compound 4c as a promising lead for further development of potent and selective DDR1 inhibitors. Moreover, this work establishes a protocol for translating in silico hits to real world bioactive druggable leads.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, the Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, the Republic of Korea
| | - Cho Jaemin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, the Republic of Korea
| | - Suin Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, the Republic of Korea
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, the Republic of Korea
| | - Moo Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, the Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, the Republic of Korea.
| |
Collapse
|
3
|
Garelja ML, Alexander TI, Bennie A, Nimick M, Petersen J, Walker CS, Hay DL. Pharmacological characterisation of erenumab, Aimovig, at two calcitonin gene-related peptide responsive receptors. Br J Pharmacol 2024; 181:142-161. [PMID: 37580864 PMCID: PMC10840612 DOI: 10.1111/bph.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and βCGRP. EXPERIMENTAL APPROACH Erenumab antagonism was quantified through IC50 and pKB experiments, measuring cAMP production. We used SK-N-MC cells which endogenously express the human CGRP receptor, and HEK293S and Cos7 cells transiently transfected to express either human CGRP or AMY1 receptors. KEY RESULTS Erenumab antagonised both the CGRP and AMY1 receptors with an ~20-120-fold preference for the CGRP receptor, depending on the cells, agonist, analytical approach and/or assay format. Erenumab antagonised both forms of CGRP equally, and appeared to act as a competitive reversible antagonist at both receptors. CONCLUSION AND IMPLICATIONS Despite being designed to target the CGRP receptor, erenumab can antagonise the AMY1 receptor. Its ability to antagonise CGRP activity at both receptors may be useful in better understanding the clinical profile of erenumab.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Amy Bennie
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
4
|
Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur J Med Chem 2023; 260:115758. [PMID: 37657268 DOI: 10.1016/j.ejmech.2023.115758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.
Collapse
Affiliation(s)
- Negar Sheikhi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahraminejad
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Dighriri IM, Nazel S, Alharthi AM, Altowairqi NA, Albariqi AM, Tohari MA, Alameer AA, Alsaran AK, ALshammari FR, AlMutairi NF, Alsubaie FM, Alharbi TA. A Comprehensive Review of the Mechanism, Efficacy, Safety, and Tolerability of Ubrogepant in the Treatment of Migraine. Cureus 2023; 15:e48160. [PMID: 38046695 PMCID: PMC10693258 DOI: 10.7759/cureus.48160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Ubrogepant is an innovative medication designed for the acute treatment of migraine, a debilitating neurological condition that profoundly impairs quality of life, productivity, and social interactions. This comprehensive review assesses the efficacy, safety, tolerability, and mechanism of action of ubrogepant through a rigorous methodology, including an in-depth literature review from reputable databases like PubMed, Web of Science, Embase, Scopus, and Cochrane. Classified as a calcitonin gene-related peptide (CGRP) receptor antagonist, ubrogepant has emerged as a potential revolutionary medication for migraine treatment. CGRP is a peptide integral to migraine pathophysiology, and its blockade has demonstrated great therapeutic potential. Unlike triptans, known for their cardiovascular risks, ubrogepant lacks vasoconstrictive properties, making it a safer alternative for a broader patient population. Ubrogepant offers significant potential for pain relief, symptom reduction, and restoration of normal function during a migraine attack, and it outperforms placebo in terms of efficacy. It also presents favorable safety, with generally mild adverse drug events (ADEs), such as nausea, dizziness, and somnolence, similar to placebo effects. Consistent results from clinical trials confirm its tolerability, with minor ADEs and no safety alerts for the tested doses, indicating that ubrogepant is a safe and well-tolerated option for migraine treatment. As an effective oral medication, ubrogepant could be an alternative to traditional acute migraine treatments. Its benefits include a unique mechanism of action, rapid onset, and favorable safety profile. However, specific contraindications, such as hypersensitivity, severe hepatic impairment, concurrent use of CYP3A4 inhibitors, pregnancy or breastfeeding, and uncontrolled hypertension, require caution or avoidance of ubrogepant. Despite these limitations, ubrogepant signals a promising new direction in migraine therapeutics.
Collapse
Affiliation(s)
| | - Shahad Nazel
- Faculty of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, SAU
| | | | | | - Aqeel M Albariqi
- Department of Pharmacy, Bariq Primary Health Care Center, Bariq, SAU
| | - Mona A Tohari
- Department of Pharmacy, Alhada Armed Forces Hospital, Taif, SAU
| | | | - Amjad K Alsaran
- Department of Pharmacy, Specialized Medical Center Hospital, Riyadh, SAU
| | | | - Naif F AlMutairi
- Department of Pharmacy, Maternity and Children Hospital, Buraydah, SAU
| | - Fahad M Alsubaie
- Department of Pharmacy, King Abdulaziz Specialist Hospital, Taif, SAU
| | - Turki A Alharbi
- Department of Pharmacy, Al Rass General Hospital, Al Rass, SAU
| |
Collapse
|
6
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
7
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|