1
|
Rao SS, Kundapura SV, Dey D, Palaniappan C, Sekar K, Kulal A, Ramagopal UA. Cumulative phylogenetic, sequence and structural analysis of Insulin superfamily proteins provide unique structure-function insights. Mol Inform 2024; 43:e202300160. [PMID: 38973776 DOI: 10.1002/minf.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 07/09/2024]
Abstract
The insulin superfamily proteins (ISPs), in particular, insulin, IGFs and relaxin proteins are key modulators of animal physiology. They are known to have evolved from the same ancestral gene and have diverged into proteins with varied sequences and distinct functions, but maintain a similar structural architecture stabilized by highly conserved disulphide bridges. The recent surge of sequence data and the structures of these proteins prompted a need for a comprehensive analysis, which connects the evolution of these sequences (427 sequences) in the light of available functional and structural information including representative complex structures of ISPs with their cognate receptors. This study reveals (a) unusually high sequence conservation of IGFs (>90 % conservation in 184 sequences) and provides a possible structure-based rationale for such high sequence conservation; (b) provides an updated definition of the receptor-binding signature motif of the functionally diverse relaxin family members (c) provides a probable non-canonical C-peptide cleavage site in a few insulin sequences. The high conservation of IGFs appears to represent a classic case of resistance to sequence diversity exerted by physiologically important interactions with multiple partners. We also propose a probable mechanism for C-peptide cleavage in a few distinct insulin sequences and redefine the receptor-binding signature motif of the relaxin family. Lastly, we provide a basis for minimally modified insulin mutants with potential therapeutic application, inspired by concomitant changes observed in other insulin superfamily protein members supported by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shrilakshmi Sheshagiri Rao
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Debayan Dey
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Present address: Department of Biochemistry, Emory University School of Medicine, GA 30322, Atlanta, USA
| | - Chandrasekaran Palaniappan
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
| | - Ananda Kulal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
| | - Udupi A Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Department of Microbiology and FST, School of Science, GITAM University, 530045, Visakhapatnam, India
| |
Collapse
|
2
|
Palaniappan C, Rajendran S, Sekar K. Alternate conformations found in protein structures implies biological functions: A case study using cyclophilin A. Curr Res Struct Biol 2024; 7:100145. [PMID: 38690327 PMCID: PMC11059445 DOI: 10.1016/j.crstbi.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Protein dynamics linked to numerous biomolecular functions, such as ligand binding, allosteric regulation, and catalysis, must be better understood at the atomic level. Reactive atoms of key residues drive a repertoire of biomolecular functions by flipping between alternate conformations or conformational substates, seldom found in protein structures. Probing such sparsely sampled alternate conformations would provide mechanistic insight into many biological functions. We are therefore interested in evaluating the instance of amino acids adopted alternate conformations, either in backbone or side-chain atoms or in both. Accordingly, over 70000 protein structures appear to contain alternate conformations only 'A' and 'B' for any atom, particularly the instance of amino acids that adopted alternate conformations are more for Arg, Cys, Met, and Ser than others. The resulting protein structure analysis depicts that amino acids with alternate conformations are mainly found in the helical and β-regions and are often seen in high-resolution X-ray crystal structures. Furthermore, a case study on human cyclophilin A (CypA) was performed to explain the pre-existing intrinsic dynamics of catalytically critical residues from the CypA and how such intrinsic dynamics perturbed upon Ser99Thr mutation using molecular dynamics simulations on the ns-μs timescale. Simulation results demonstrated that the Ser99Thr mutation had impaired the alternate conformations or the catalytically productive micro-environment of Phe113, mimicking the experimentally observed perturbation captured by X-ray crystallography. In brief, a deeper comprehension of alternate conformations adopted by the amino acids may shed light on the interplay between protein structure, dynamics, and function.
Collapse
Affiliation(s)
- Chandrasekaran Palaniappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Santhosh Rajendran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Kanagaraj Sekar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Naranjo-Galvis CA, McLeod R, Gómez-Marín JE, de-la-Torre A, Rocha-Roa C, Cardona N, Sepúlveda-Arias JC. Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia. Microorganisms 2023; 11:2508. [PMID: 37894166 PMCID: PMC10609425 DOI: 10.3390/microorganisms11102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular toxoplasmosis (OT) is characterized by inflammation within the eye and is the most recognized clinical manifestation of toxoplasmosis. The objective of this study was to identify new single-nucleotide polymorphisms (SNPs) in the P2RX7 gene that may have significance in the immune response to OT in Colombian patients. A case-control study was conducted to investigate the associations between SNPs (rs1718119 and rs2230912) in the P2RX7 gene and OT in 64 Colombian patients with OT and 64 controls. Capillary electrophoresis was used to analyze the amplification products, and in silico algorithms were employed to predict deleterious SNPs. Stability analysis of amino acid changes indicated that both mutations could lead to decreased protein structure stability. A nonsynonymous SNP, Gln460Arg, located in the long cytoplasmic tail of the receptor, showed a significant association with OT (Bonferroni correction (BONF) = 0.029; odds ratio OR = 3.46; confidence interval CI: 1.05 to 11.39), while no significant association between rs1718119 and OT risk was observed. Based on the 3D structure analysis of the P2RX7 protein trimer, it is hypothesized that an increase in the flexibility of the cytoplasmic domain of this receptor could alter its function. This SNP could potentially serve as a biomarker for identifying Colombian patients at risk of OT.
Collapse
Affiliation(s)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences and Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL 60637, USA
| | - Jorge Enrique Gómez-Marín
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
| | - Alejandra de-la-Torre
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
- Grupo de Investigación en Neurociencias (NeURos), Neurovitae Research Center, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110111, Colombia
| | - Cristian Rocha-Roa
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
| | - Néstor Cardona
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
- Facultad de Odontología, Universidad Antonio Nariño, Armenia 630004, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
4
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
5
|
Paciotti R, Storchi L, Marrone A. Homodimeric complexes of the 90-231 human prion: a multilayered computational study based on FMO/GRID-DRY approach. J Mol Model 2022; 28:241. [PMID: 35918494 PMCID: PMC9345805 DOI: 10.1007/s00894-022-05244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
Abstract
The molecular interaction properties and aggregation capabilities disclosed by PrP-E200K, a pathogenic mutant of the human prion protein, were investigated in detail using multilayered computational approaches. In a previous work, we reported that the electrostatic complementarity between region1 (negative) and region3 (positive) has been assumed to lead to a head-to tail interaction between 120 and 231 PrP-E200K units and to initiation of the aggregation process. In this work, we extended the PrP-E200K structure by including the unstructured 90-120 segment which was found to assume different conformations. Plausible models of 90-231 PrP-E200K dimers were calculated and analyzed in depth to identify the nature of the involved protein-protein interactions. The unstructured 90-120 segment was found to extend the positively charged region3 involved in the association of PrP-E200K units which resulted to be driven by hydrophobic interactions. The combination of molecular dynamics, protein-protein docking, grid-based mapping, and fragment molecular orbital approaches allowed us to provide a plausible mechanism of the early state of 90-231 PrP-E200K aggregation, considered a preliminary step of amyloid conversion.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Loriano Storchi
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Molecular Discovery Limited, Middlesex, London, UK
| | - Alessandro Marrone
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Xia K, Shen H, Wang P, Tan R, Xun D. Investigation of the conformation of human prion protein in ethanol solution using molecular dynamics simulations. J Biomol Struct Dyn 2022:1-10. [PMID: 35838152 DOI: 10.1080/07391102.2022.2099466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
When the conformation of protein is changed from its natural state to a misfolded state, some diseases will happen like prion disease. Prion diseases are a set of deadly neurodegenerative diseases caused by prion protein misfolding and aggregation. Monohydric alcohols have a strong influence on the structure of protein. However, whether monohydric alcohols inhibit amyloid fibrosis remains uncertain. Here, to elucidate the effect of ethanol on the structural stability of human prion protein, molecular dynamics simulations were employed to analyze the conformational changes and dynamics characteristics of human prion proteins at different temperatures. The results show that the extension of β-sheet occurs more easily and the α-helix is more easily disrupted at high temperatures. We found that ethanol can destroy the hydrophobic interactions and make the hydrogen bonds stable, which protects the secondary structure of the protein, especially at 500 K.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kui Xia
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Haolei Shen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Peng Wang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Rongri Tan
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Damao Xun
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|