1
|
Cogan PS. A cautionary tale of paradox and false positives in cannabidiol research. Expert Opin Drug Discov 2025; 20:5-15. [PMID: 39663751 DOI: 10.1080/17460441.2024.2441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Decades of research on cannabidiol (CBD) have identified thousands of purported cellular effects, and many of these have been proposed to correlate with a vast therapeutic potential. Yet despite the large volume of findings fueling broad optimism in this regard, few have translated into any demonstrable clinical benefit or even notable side effects. Therein resides the great paradox of CBD: a drug that appears to affect almost everything in vitro does not clearly do much of anything in a clinical setting. AREAS COVERED Comparative critical evaluation of literature searched in PubMed and Google Scholar discovers multiple instances of inconsistent and contradictory findings regarding the pharmacology and clinical effects of CBD, as well as several uncelebrated reports that suggest potential explanations for these observations. Many of those effects attributed to the ostensible pharmacologic activity of cannabidiol are almost certainly the product of false-positive experimental results and artifactual findings that are unlikely to be realized under physiologic conditions. EXPERT OPINION Concerns regarding the physiological relevance and translational potential of in vitro findings across the field of cannabinoid research are both far-reaching and demanding of attention in the form of appropriate experimental controls that remain almost universally absent.
Collapse
Affiliation(s)
- Peter S Cogan
- School of Pharmacy, Regis University, Denver, CO, USA
| |
Collapse
|
2
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Guldager MB, Chaves Filho AM, Biojone C, Joca S. Therapeutic potential of cannabidiol in depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:251-293. [PMID: 39029987 DOI: 10.1016/bs.irn.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Major depressive disorder (MDD) is a widespread and debilitating condition affecting a significant portion of the global population. Traditional treatment for MDD has primarily involved drugs that increase brain monoamines by inhibiting their uptake or metabolism, which is the basis for the monoaminergic hypothesis of depression. However, these treatments are only partially effective, with many patients experiencing delayed responses, residual symptoms, or complete non-response, rendering the current view of the hypothesis as reductionist. Cannabidiol (CBD) has shown promising results in preclinical models and human studies. Its mechanism is not well-understood, but may involve monoamine and endocannabinoid signaling, control of neuroinflammation and enhanced neuroplasticity. This chapter will explore CBD's effects in preclinical and clinical studies, its molecular mechanisms, and its potential as a treatment for MDD.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | | | - Caroline Biojone
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Pan C, Li Q, Xiong S, Yang Y, Yang Y, Huang C, Wang ZP. Delivery Strategies, Structural Modification, and Pharmacological Mechanisms of Honokiol: A Comprehensive Review. Chem Biodivers 2024; 21:e202302032. [PMID: 38308434 DOI: 10.1002/cbdv.202302032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Honokiol (HK) is a traditional Chinese herbal bioactive compound that originates mainly from the Magnolia species, traditionally used to treat anxiety and stroke, as well as alleviation of flu symptoms. This natural product and its derivatives displayed diverse biological activities, including anticancer, antioxidant, anti-inflammatory, neuroprotective, and antimicrobial activities. However, its poor bioavailability and pharmacological activity require primary consideration in the development of HK-based drugs. Recent innovative HK formulations based on the nanotechnology approach allowed for improvement in both bioavailability and therapeutic efficacy. Chemical derivation and drug combination are also effective strategies to ameliorate the drawbacks of HK. In recent years, studies on HK derivatives and compositions have made great progress in the treatment of cancer, inflammation, bacterial infection, cardiovascular, and cerebrovascular diseases, demonstrating better activity than HK. The objective of this review is an examination of the recent developments in the field of pharmacological activity of HK and its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials in HK are also summarized.
Collapse
Affiliation(s)
- Congying Pan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Qing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Shuxin Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Yan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Yi Yang
- Chongqing Energy College, No. 2 Fuxing Avenue, Shuangfu New District, Jiangjin District, Chongqing, 402260, P. R. China
| | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Zhi-Peng Wang
- College of Pharmacy, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, 400016, P. R. China
| |
Collapse
|
5
|
Marquez AB, Vicente J, Castro E, Vota D, Rodríguez-Varela MS, Lanza Castronuovo PA, Fuentes GM, Parise AR, Romorini L, Alvarez DE, Bueno CA, Ramirez CL, Alaimo A, García CC. Broad-Spectrum Antiviral Effect of Cannabidiol Against Enveloped and Nonenveloped Viruses. Cannabis Cannabinoid Res 2024; 9:751-765. [PMID: 37682578 DOI: 10.1089/can.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Introduction: Cannabidiol (CBD), the main non-psychoactive cannabinoid of the Cannabis sativa plant, is a powerful antioxidant compound that in recent years has increased interest due to causes effects in a wide range of biological functions. Zika virus (ZIKV) is a virus transmitted mainly by the Aedes aegypti mosquitoes, which causes neurological diseases, such as microcephaly and Guillain-Barre syndrome. Although the frequency of viral outbreaks has increased recently, no vaccinations or particular chemotherapeutic treatments are available for ZIKV infection. Objectives: The major aim of this study was to explore the in vitro antiviral activity of CBD against ZIKV, expanding also to other dissimilar viruses. Materials and Methods: Cell cultures were infected with enveloped and nonenveloped viruses and treated with non-cytotoxic concentrations of CBD and then, viral titers were determined. Additionally, the mechanism of action of the compound during ZIKV in vitro infections was studied. To study the possible immunomodulatory role of CBD, infected and uninfected Huh-7 cells were exposed to 10 μM CBD during 48 h and levels of interleukins 6 and 8 and interferon-beta (IFN-β) expression levels were measured. On the other hand, the effect of CBD on cellular membranes was studied. For this, an immunofluorescence assay was performed, in which cell membranes were labeled with wheat germ agglutinin. Finally, intracellular cholesterol levels were measured. Results: CBD exhibited a potent antiviral activity against all the tested viruses in different cell lines with half maximal effective concentration values (CE50) ranging from 0.87 to 8.55 μM. Regarding the immunomodulatory effect of CBD during ZIKV in vitro infections, CBD-treated cells exhibited significantly IFN-β increased levels, meanwhile, interleukins 6 and 8 were not induced. Furthermore, it was determined that CBD affects cellular membranes due to the higher fluorescence intensity that was observed in CBD-treated cells and lowers intracellular cholesterol levels, thus affecting the multiplication of ZIKV and other viruses. Conclusions: It was demonstrated that CBD inhibits structurally dissimilar viruses, suggesting that this phytochemical has broad-spectrum antiviral effect, representing a valuable alternative in emergency situations during viral outbreaks, like the one caused by severe acute respiratory syndrome coronavirus 2 in 2020.
Collapse
Affiliation(s)
- Agostina B Marquez
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Inmunofarmacología, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - María S Rodríguez-Varela
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Priscila A Lanza Castronuovo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | - Giselle M Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandro R Parise
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Carlos A Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina L Ramirez
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Asociación Civil CBG2000, Mar del Plata, Argentina
| | - Agustina Alaimo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Morocho Z, Panella M, Gamez Hernandez A, Clarke C, Perez E, Silverberg S, Lee S. Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure. ACS Pharmacol Transl Sci 2024; 7:1546-1556. [PMID: 38751632 PMCID: PMC11091966 DOI: 10.1021/acsptsci.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence suggests that many bioactive molecules can nonspecifically modulate the physicochemical properties of membranes and influence the action of embedded membrane proteins. This study investigates the interactions of curcumin with protein-free model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC with cholesterol (4/1 mol ratio). The focus is on the capability of curcumin to modify membrane barrier properties such as water permeability assayed through the droplet interface bilayer (DIB) model membrane. For pure DOPC, our findings show a concentration-dependent biphasic effect: a reduction in water permeability is observed at low concentrations (up to 2 mol %), whereas at high concentrations of curcumin, water permeability increases. In the presence of cholesterol, we observed an overall reduction in water permeability. A combination of complementary experimental methods, including phase transition parameters studied by differential scanning calorimetry (DSC) and structural properties measured by attenuated total reflectance (ATR)-FTIR, provides a deeper understanding of concentration-dependent interactions of curcumin with DOPC bilayers in the absence and presence of cholesterol. Our experimental findings align with a molecular mechanism of curcumin's interaction with model membranes, wherein its effect is contingent on its concentration. At low concentrations, curcumin binds to the lipid-water interface through hydrogen bonding with the phosphate headgroup, thereby obstructing the transport of water molecules. Conversely, at high concentrations, curcumin permeates the acyl chain region, inducing packing disorders and demonstrating evidence of phase separation. Enhanced knowledge of the impact of curcumin on membranes, which, in turn, can affect protein function, is likely to be beneficial for the successful translation of curcumin into effective medicine.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Zachary Morocho
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Micaela Panella
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
7
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Perla W, Poust C, Gamez Hernandez A, Clarke C, Silverberg S, Perez E, Lee S. Differential Effects of Soy Isoflavones on the Biophysical Properties of Model Membranes. J Phys Chem B 2024; 128:2412-2424. [PMID: 38417149 PMCID: PMC10945484 DOI: 10.1021/acs.jpcb.3c08390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
The effects that the main soy isoflavones, genistein and daidzein, have upon the biophysical properties of a model lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC with cholesterol (4 to 1 mol ratio) have been investigated by transbilayer water permeability, differential scanning calorimetry, and confocal Raman microspectroscopy. Genistein is found to increase water permeability, decrease phase transition temperature, reduce enthalpy of transition, and induce packing disorder in the DOPC membrane with an increasing concentration. On the contrary, daidzein decreases water permeability and shows negligible impact on thermodynamic parameters and packing disorder at comparable concentrations. For a cholesterol-containing DOPC bilayer, both genistein and daidzein exhibit an overall less pronounced effect on transbilayer water permeability. Their respective differential abilities to modify the physical and structural properties of biomembranes with varying lipid compositions signify a complex and sensitive nature to isoflavone interactions, which depends on the initial state of bilayer packing and the differences in the molecular structures of these soy isoflavones, and provide insights in understanding the interactions of these molecules with cellular membranes.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Wilber Perla
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Christopher Poust
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
8
|
Krmic M, Perez E, Scollan P, Ivanchenko K, Gamez Hernandez A, Giancaspro J, Rosario J, Ceja-Vega J, Gudyka J, Porteus R, Lee S. Aspirin Interacts with Cholesterol-Containing Membranes in a pH-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16444-16456. [PMID: 37939382 PMCID: PMC10666536 DOI: 10.1021/acs.langmuir.3c02242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Aspirin has been used for broad therapeutic treatment, including secondary prevention of cardiovascular disease associated with increased cholesterol levels. Aspirin and other nonsteroidal anti-inflammatory drugs have been shown to interact with lipid membranes and change their biophysical properties. In this study, mixed lipid model bilayers made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) comprising varying concentrations of cholesterol (10:1, 4:1, and 1:1 mole ratio of lipid:chol), prepared by the droplet interface bilayer method, were used to examine the effects of aspirin at various pH on transbilayer water permeability. The presence of aspirin increases the water permeability of POPC bilayers in a concentration-dependent manner, with a greater magnitude of increase at pH 3 compared to pH 7. In the presence of cholesterol, aspirin is similarly shown to increase water permeability; however, the extent of the increase depends on both the concentration of cholesterol and the pH, with the least pronounced enhancement in water permeability at high cholesterol levels at pH 7. A fusion of data from differential scanning calorimetry, confocal Raman microspectrophotometry, and interfacial tensiometric measurements demonstrates that aspirin can promote significant thermal, structural, and interfacial property perturbations in the mixed-lipid POPC or DOPC membranes containing cholesterol, indicating a disordering effect on the lipid membranes. Our findings suggest that aspirin fluidizes phosphocholine membranes in both cholesterol-free and cholesterol-enriched states and that the overall effect is greater when aspirin is in a neutral state. These results confer a deeper comprehension of the divergent effects of aspirin on biological membranes having heterogeneous compositions, under varying physiological pH and different cholesterol compositions, with implications for a better understanding of the gastrointestinal toxicity induced by the long term use of this important nonsteroidal anti-inflammatory molecule.
Collapse
Affiliation(s)
- Michael Krmic
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Patrick Scollan
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Joseph Giancaspro
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Juan Rosario
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jamie Gudyka
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
9
|
Oz M, Yang KHS, Mahgoub MO. Effects of cannabinoids on ligand-gated ion channels. Front Physiol 2022; 13:1041833. [PMID: 36338493 PMCID: PMC9627301 DOI: 10.3389/fphys.2022.1041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion channels, and enzymes in a cannabinoid-receptor independent manner. In this report, the direct actions of endo-, phyto-, and synthetic cannabinoids on the functional properties of ligand-gated ion channels and the plausible mechanisms mediating these effects were reviewed and discussed.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Murat Oz,
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, United States
| | - Mohamed Omer Mahgoub
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, UAE
| |
Collapse
|