1
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease. Molecules 2024; 29:1782. [PMID: 38675602 PMCID: PMC11051924 DOI: 10.3390/molecules29081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 μM) with pyrimidone compound 5 (GSK-3β: IC50 = 3 μM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3β (GSK-3β). The optimal compound 18a possessed potent dual AChE/GSK-3β inhibition (AChE: IC50 = 0.047 ± 0.002 μM, GSK-3β: IC50 = 0.930 ± 0.080 μM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 μM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Xiuyuan Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Shuai Qin
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Beiyu Zhang
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Xinnan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Zheying Zhu
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| |
Collapse
|
4
|
Małecka M, Sobiesiak M, Chęcińska L, Kozakiewicz-Piekarz A, Napiórkowska-Mastalerz M, Ziomkowska B, Stepniak A, Kupcewicz B. Fluorescent properties in solid-state and solution of novel tricyclic derivatives of chloro/bromophenylchromanones and 2-methylpyrazoline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123715. [PMID: 38103355 DOI: 10.1016/j.saa.2023.123715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
In this work, we reported the synthesis and spectroscopic characterization of seven novel tricyclic compounds resulting from the reaction of 3-benzylidenechromanone with Cl or Br substituent in different positions and without halogen with methylhydrazine. The structural characterization of compounds was done through different techniques i.e., FTIR,1HNMR,a single and powder X-Ray diffraction. Moreover, fluorescence quantum yield and lifetime assessed their fluorescent properties in the solid state and various solvents. Derivatives with Cl or Br substituent in positions 2 and 4 are isostructural. 4-Cl, 4-Br and 3-Cl compounds exhibit fluorescence with moderate efficiency (quantum yield 0.11-0.26) in solid state due to specific arrangements, so-called π-stack brick stone with head-to-tail self-assembly. Other crystalline compounds (2-Cl, 2-Br and 3-Br) that exhibit negligible fluorescence quantum yield have crossed V-type arrangement. In the solution, the nonhalogenated compound shows the best fluorescence efficiency. In turn, the presence of halogen atoms results in fluorescence decreasing. TD-DFT study revealed that unsubstituted compound higher emissive in solution has a different electron density distribution at HOMO and LUMO levels than less emissive substituted compounds (A3 and A3).
Collapse
Affiliation(s)
- Magdalena Małecka
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland.
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| | - Lilianna Chęcińska
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Marta Napiórkowska-Mastalerz
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Jagiellonska 15, 85-089 Bydgoszcz, Poland
| | - Blanka Ziomkowska
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Jagiellonska 15, 85-089 Bydgoszcz, Poland
| | - Artur Stepniak
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
5
|
Zhu X, Lv Y, Fan M, Guo J, Zhang Y, Gao B, Zhang C, Xie Y. Exploration of the novel phthalimide-hydroxypyridinone derivatives as multifunctional drug candidates against Alzheimer's disease. Bioorg Chem 2023; 141:106817. [PMID: 37690318 DOI: 10.1016/j.bioorg.2023.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
A novel series of phthalimide-hydroxypyridinone derivatives were rationally designed and evaluated as potential anti-Alzheimer's disease (AD) agents. Bioactivity tests showed that all compounds displayed great iron ions-chelating activity (pFe3+ = 17.07-19.52), in addition to potent inhibition of human monoamine oxidase B (hMAO-B). Compound 11n emerged as the most effective anti-AD lead compound with a pFe3+ value of 18.51, along with selective hMAO-B inhibitory activity (IC50 = 0.79 ± 0.05 μM, SI > 25.3). The results of cytotoxicity assays demonstrated that 11n showed extremely weak toxicity in PC12 cell line at 50 μM. Additionally, compound 11n displayed a cytoprotective effect against H2O2-induced oxidative damage. Moreover, compound 11n exhibited ideal blood-brain barrier (BBB) permeability in the parallel artificial membrane permeation assay (PAMPA), and significantly improved scopolamine-induced cognitive and memory impairment in mice behavioral experiments. In conclusion, these favorable experimental results suggested compound 11n deserved further investigation as an anti-AD lead compound.
Collapse
Affiliation(s)
- Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
6
|
Hu Z, Zhou S, Li J, Li X, Zhou Y, Zhu Z, Xu J, Liu J. Design, synthesis and biological evaluation of novel indanones derivatives as potent acetylcholinesterase/monoamine oxidase B inhibitors. Future Med Chem 2023; 15:1823-1841. [PMID: 37902028 DOI: 10.4155/fmc-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Aim: Based on a multitarget design strategy, a series of novel indanone-1-benzyl-1,2,3,6-tetrahydropyridin hybrids were identified for the potential treatment of Alzheimer's disease (AD). Results: These compounds exhibited significant inhibitory activities against acetylcholinesterase (AChE) and moderate inhibitory activities toward monoamine oxidase B (MAO-B). The optimal compound A1 possessed excellent dual AChE/MAO-B inhibition both in terms of potency (AChE: IC50 = 0.054 ± 0.004 μM; MAO-B: IC50 = 3.25 ± 0.20 μM), moderate inhibitory effects on self-mediated amyloid-β (Aβ) aggregation and antioxidant activity. In addition, compound A1 exhibited low neurotoxicity. More importantly, compound A1 showed significant cognitive and spatial memory improvements in the scopolamine-induced AD mouse model. Conclusion: All results suggest that compound A1 may become a promising lead of anti-AD drug for further development.
Collapse
Affiliation(s)
- Zhaoxin Hu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shengnan Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Junda Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|