1
|
Zhao L, Zhang M, Li Q, Wang X, Lu J, Han Y, Cai Y. Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases. Neural Regen Res 2025; 20:2373-2381. [PMID: 39359094 DOI: 10.4103/nrr.nrr-d-23-01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00027/figure1/v/2024-09-30T120553Z/r/image-tiff Several promising plasma biomarker proteins, such as amyloid-β (Aβ), tau, neurofilament light chain, and glial fibrillary acidic protein, are widely used for the diagnosis of neurodegenerative diseases. However, little is known about the long-term stability of these biomarker proteins in plasma samples stored at -80°C. We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort. Plasma samples from 229 cognitively unimpaired individuals, encompassing healthy controls and those experiencing subjective cognitive decline, as well as 99 patients with cognitive impairment, comprising those with mild cognitive impairment and dementia, were acquired from the Sino Longitudinal Study on Cognitive Decline project. These samples were stored at -80°C for up to 6 years before being used in this study. Our results showed that plasma levels of Aβ42, Aβ40, neurofilament light chain, and glial fibrillary acidic protein were not significantly correlated with sample storage time. However, the level of total tau showed a negative correlation with sample storage time. Notably, in individuals without cognitive impairment, plasma levels of total protein and tau phosphorylated protein threonine 181 (p-tau181)also showed a negative correlation with sample storage time. This was not observed in individuals with cognitive impairment. Consequently, we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time. Therefore, caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases, such as Alzheimer's disease. Furthermore, in cohort studies, it is important to consider the impact of storage time on the overall results.
Collapse
Affiliation(s)
- Lifang Zhao
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Mingkai Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qimeng Li
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xuemin Wang
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative diseases, Ministry of Education, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan Province, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Gaoke Innovation Center, Shenzhen, Guangdong Province, China
| | - Yanning Cai
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory of Neurodegenerative diseases, Ministry of Education, Beijing, China
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Ni M, Zhu X, Wang K, Guo W, Shi Q, Li Y, Cui M, Xie Q. Novel β-amyloid PET Imaging Study of [ 18F]92 in Patients with Cognitive Decline. ACS OMEGA 2024; 9:34675-34683. [PMID: 39157119 PMCID: PMC11325415 DOI: 10.1021/acsomega.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
[18F]-4-((E)-(((E)-4-(2-(2-(2-Fluoroethoxy)ethoxy)ethoxy)benzylidene)-hydrazono)methyl)-N-methylaniline ([18F]92) is a novel positron emission tomography (PET) tracer previously reported to exhibit high binding affinity to aggregated β-amyloid (Aβ). This study aims to report a fully automated radiosynthesis procedure for [18F]92, explore its radioactive distribution in the brains of healthy subjects, and investigate its potential application value in the early diagnosis of Alzheimer's disease (AD). The fully automated radiosynthesis of [18F]92 was performed on the AllinOne module. Thirty one participants were recruited for this study. Dynamic [18F]92 PET imaging was conducted over 0-90 min period to assess time-activity curves (TAC) and standardized uptake value ratio (SUVR) curves in cognitively normal (CN) subjects. All participants were visually classified as either positive (+) or negative (-). Semiquantitative analyses of [18F]92 were performed by calculating SUVRs in different regions of interest. Furthermore, the study analyzed the relationships between global SUVR and plasma AD biomarkers, including Aβ42, Aβ40, P-tau181, and T-tau. The automated radiosynthesis of [18F]92 was completed within 50 min, yielding a radiochemical purity of greater than 95% and a radiochemical yield of 36 ± 3% (nondecay-corrected). Among the participants, 15 were estimated as Aβ (-) and 16 as Aβ (+). TACs indicated that [18F]92 rapidly crossed the blood-brain barrier within 10 min, followed by a rapid decrease, which then slowed down in the last 50-90 min. SUVR curves revealed that SUVR values stabilized around 60-70 min after injection and reached an equilibrium between 70 and 90 min, primarily in the cerebral cortex. SUVRs of Aβ (+) participants were significantly higher than those of Aβ (-) individuals within the cerebral cortex. In addition, Aβ42 and the Aβ42/Aβ40 ratio exhibited negative correlations with global SUVR, while plasma P-tau181 and the P-tau181/T-tau ratio displayed positive correlations with global SUVR. [18F]92 exhibits excellent pharmacokinetic properties in the human brain and can be synthesized automatically on a large scale. [18F]92 is a promising and reliable radiotracer for estimating Aβ pathology accumulation, providing valuable assistance in AD diagnosis and guiding clinical trials of therapeutic drugs.
Collapse
Affiliation(s)
- Ming Ni
- Department
of Nuclear Medicine, the First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xingxing Zhu
- Department
of Nuclear Medicine, the First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaixuan Wang
- Department
of Nuclear Medicine, the First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Hefei, Anhui 230001, China
- School
of Pharmacy, Bengbu Medical University, Bengbu 233000, China
| | - Wenliang Guo
- Department
of Neurology, the Second Hospital of Anhui
Medical University, Hefei, Anhui 230001, China
| | - Qin Shi
- Department
of Nuclear Medicine, the First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuying Li
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Center
for Advanced Materials Research, Beijing
Normal University at Zhuhai, Zhuhai 519087, China
| | - Mengchao Cui
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Center
for Advanced Materials Research, Beijing
Normal University at Zhuhai, Zhuhai 519087, China
| | - Qiang Xie
- Department
of Nuclear Medicine, the First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Hefei, Anhui 230001, China
- School
of Pharmacy, Bengbu Medical University, Bengbu 233000, China
- Anhui
Provincial
Key Laboratory of Precision Pharmaceutical Preparations and Clinical
Pharmacy, Hefei, Anhui 230001, China
| |
Collapse
|
4
|
Xu L, Ren C, Jing C, Wang G, Wei H, Kong M, Ba M. Predicting amyloid-PET and clinical conversion in apolipoprotein E ε3/ε3 non-demented individuals with multidimensional factors. Eur J Neurosci 2024; 60:3742-3758. [PMID: 38698692 DOI: 10.1111/ejn.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
The apolipoprotein E (APOE) ε4 is a well-established risk factor of amyloid-β (Aβ) in Alzheimer's disease (AD). However, because of the high prevalence of APOE ε3, there may be a large number of people with APOE ε3/ε3 who are non-demented and have Aβ pathology. There are limited studies on assessing Aβ status and clinical conversion in the APOE ε3/ε3 non-demented population. Two hundred and ninety-three non-demented individuals with APOE ε3/ε3 from ADNI database were divided into Aβ-positron emission tomography (Aβ-PET) positivity (+) and Aβ-PET negativity (-) groups using cut-off value of >1.11. Stepwise regression searched for a single or multidimensional clinical variables for predicting Aβ-PET (+), and the receiver operating characteristic curve (ROC) assessed the accuracy of the predictive models. The Cox regression model explored the risk factors associated with clinical conversion to mild cognitive impairment (MCI) or AD. The results showed that the combination of sex, education, ventricle and white matter hyperintensity (WMH) volume can accurately predict Aβ-PET status in cognitively normal (CN), and the combination of everyday cognition study partner total (EcogSPTotal) score, age, plasma p-tau 181 and WMH can accurately predict Aβ-PET status in MCI individuals. EcogSPTotal score were independent predictors of clinical conversion to MCI or AD. The findings may provide a non-invasive and effective tool to improve the efficiency of screening Aβ-PET (+), accelerate and reduce costs of AD trial recruitment in future secondary prevention trials or help to select patients at high risk of disease progression in clinical trials.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Chao Ren
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Chenxi Jing
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Gang Wang
- School of Ulsan Ship and Ocean College, Ludong University, Yantai, China
| | - Hongchun Wei
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong, China
| | - Maowen Ba
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
- Yantai Regional Sub Center of National Center for Clinical Medical Research of Neurological Diseases, Shandong, China
| |
Collapse
|
5
|
Bouteloup V, Pellegrin I, Dubois B, Chene G, Planche V, Dufouil C. Explaining the Variability of Alzheimer Disease Fluid Biomarker Concentrations in Memory Clinic Patients Without Dementia. Neurology 2024; 102:e209219. [PMID: 38527237 PMCID: PMC11175632 DOI: 10.1212/wnl.0000000000209219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/02/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients' comorbidities can affect Alzheimer disease (AD) blood biomarker concentrations. Because a limited number of factors have been explored to date, our aim was to assess the proportion of the variance in fluid biomarker levels explained by the clinical features of AD and by a large number of non-AD-related factors. METHODS MEMENTO enrolled 2,323 individuals with cognitive complaints or mild cognitive impairment in 26 French memory clinics. Baseline evaluation included clinical and neuropsychological assessments, brain MRI, amyloid-PET, CSF (optional), and blood sampling. Blood biomarker levels were determined using the Simoa-HDX analyzer. We performed linear regression analysis of the clinical features of AD (cognition, AD genetic risk score, and brain atrophy) to model biomarker concentrations. Next, we added covariates among routine biological tests, inflammatory markers, demographic and behavioral determinants, treatments, comorbidities, and preanalytical sample handling in final models using both stepwise selection processes and least absolute shrinkage and selection operator (LASSO). RESULTS In total, 2,257 participants were included in the analysis (median age 71.7, 61.8% women, 55.2% with high educational levels). For blood biomarkers, the proportion of variance explained by clinical features of AD was 13.7% for neurofilaments (NfL), 11.4% for p181-tau, 3.0% for Aβ-42/40, and 1.4% for total-tau. In final models accounting for non-AD-related factors, the variance was mainly explained by age, routine biological tests, inflammatory markers, and preanalytical sample handling. In CSF, the proportion of variance explained by clinical features of AD was 24.8% for NfL, 22.3% for Aβ-42/40, 19.8% for total-tau, and 17.2% for p181-tau. In contrast to blood biomarkers, the largest proportion of variance was explained by cognition after adjustment for covariates. The covariates that explained the largest proportion of variance were also the most frequently selected with LASSO. The performance of blood biomarkers for predicting A+ and T+ status (PET or CSF) remained unchanged after controlling for drivers of variance. DISCUSSION This comprehensive analysis demonstrated that the variance in AD blood biomarker concentrations was mainly explained by age, with minor contributions from cognition, brain atrophy, and genetics, conversely to CSF measures. These results challenge the use of blood biomarkers as isolated stand-alone biomarkers for AD.
Collapse
Affiliation(s)
- Vincent Bouteloup
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Isabelle Pellegrin
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Bruno Dubois
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Genevieve Chene
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Vincent Planche
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Carole Dufouil
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| |
Collapse
|
6
|
Lv X, Cheng Z, Wang Q, Gao F, Dai L, Du C, Liu C, Xie Q, Shen Y, Shi J. High burdens of phosphorylated tau protein and distinct precuneus atrophy in sporadic early-onset Alzheimer's disease. Sci Bull (Beijing) 2023; 68:2817-2826. [PMID: 37919158 DOI: 10.1016/j.scib.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/16/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare devastating subclassification of Alzheimer's disease (AD). EOAD affects individuals <65 years old, and accounts for 5%-10% of all AD cases. Previous studies on EOAD primarily focused on familial forms, whereas research on sporadic EOAD (sEOAD), which represents 85%-90% of EOAD cases, is limited. In this prospective cohort study, participants were recruited between 2018 and 2023 and included patients with sEOAD (n = 110), late-onset AD (LOAD, n = 89), young controls (YC, n = 50), and older controls (OC, n = 25). All AD patients fulfilled the diagnostic criteria based on biomarker evidence. Familial EOAD patients or non-AD dementia patients were excluded. Single molecule array technology was used to measure fluid biomarkers, including cerebrospinal fluid (CSF) and plasma amyloid beta (Aβ) 40, Aβ42, phosphorylated tau (P-tau) 181, total tau (T-tau), serum neurofilament light chain and glial fibrillary acidic protein (GFAP). Patients with sEOAD exhibited more severe executive function impairment and bilateral precuneus atrophy (P < 0.05, family-wise error corrected) than patients with LOAD. Patients with sEOAD showed elevated CSF and plasma P-tau181 levels (154.0 ± 81.2 pg/mL, P = 0.002; and 6.1 ± 2.3 pg/mL, P = 0.046). Moreover, precuneus atrophy was significantly correlated with serum GFAP levels in sEOAD (P < 0.001). Serum GFAP levels (area under the curve (AUC) = 96.0%, cutoff value = 154.3 pg/mL) displayed excellent diagnostic value in distinguishing sEOAD patients from the control group. These preliminary findings highlight the crucial role of tau protein phosphorylation in the pathogenesis and progression of sEOAD.
Collapse
Affiliation(s)
- Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaozhao Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiong Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Linbin Dai
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chen Du
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230001, China.
| | - Jiong Shi
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
7
|
Xiao Z, Wu W, Ma X, Wu J, Liang X, Zhou X, Cao Y, Zhao Q, Ding D. Plasma p-tau217, p-tau181, and NfL as early indicators of dementia risk in a community cohort: The Shanghai Aging Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12514. [PMID: 38145191 PMCID: PMC10740382 DOI: 10.1002/dad2.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Blood biomarkers showed values for predicting future cognitive impairment. Evidence from the community-based cohort was limited only in high-income countries. METHODS This study included 1857 dementia-free community residents recruited in 2009-2011 and followed up in waves 2014-2016 and 2019-2023 in the Shanghai Aging Study. We intended to explore the relationships of baseline plasma ALZpath phosphorylated tau 217 (p-tau217), p-tau181, neurofilament light chain (NfL) with follow-up incident dementia, Alzheimer's disease (AD), and amyloidosis. RESULTS Higher concentrations of plasma p-tau217, p-tau181, and NfL were correlated to higher decline speed of Mini-Mental State Examination score, and higher risk of incident dementia and AD. The p-tau217 demonstrated a significant correlation with longitudinal neocortical amyloid-beta (Aβ) deposition (r = 0.57 [0.30, 0.76]) and a high accuracy differentiating Aβ+ from Aβ- at follow-ups (area under the receiver operating characteristic curve = 0.821 [0.703, 0.940]). DISCUSSION Plasma p-tau217 may be an early predictive marker of AD and Aβ pathology in older community-dwelling individuals.Highlights: Plasma p-tau217, p-tau181, and NfL were positively associated with long-term cognitive decline and risk of incident dementia.Plasma p-tau217 showed a better performance distinguishing Aβ+ individuals from Aβ- individuals at follow-ups.Plasma NfL may be a suitable predictor of general cognitive decline in older community-dwelling individuals.
Collapse
Affiliation(s)
- Zhenxu Xiao
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Wanqing Wu
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaoxi Ma
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Jie Wu
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaoniu Liang
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaowen Zhou
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Yang Cao
- Clinical Epidemiology and BiostatisticsSchool of Medical SciencesFaculty of Medicine and HealthÖrebro UniversityÖrebroSweden
- Unit of Integrative EpidemiologyInstitute of Environmental MedicineKarolinska InstituteStockholmSweden
| | - Qianhua Zhao
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Ding Ding
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|