1
|
Chunowski P, Madetko-Alster N, Alster P. Asymmetry in Atypical Parkinsonian Syndromes-A Review. J Clin Med 2024; 13:5798. [PMID: 39407856 PMCID: PMC11477316 DOI: 10.3390/jcm13195798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Atypical parkinsonian syndromes (APSs) are a group of neurodegenerative disorders that differ from idiopathic Parkinson's disease (IPD) in their clinical presentation, underlying pathology, and response to treatment. APSs include conditions such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and dementia with Lewy bodies (DLB). These disorders are characterized by a combination of parkinsonian features and additional symptoms, such as autonomic dysfunction, supranuclear gaze palsy, and asymmetric motor symptoms. Many hypotheses attempt to explain the causes of neurodegeneration in APSs, including interactions between environmental toxins, tau or α-synuclein pathology, oxidative stress, microglial activation, and vascular factors. While extensive research has been conducted on APSs, there is a limited understanding of the symmetry in these diseases, particularly in MSA. Neuroimaging studies have revealed metabolic, structural, and functional abnormalities that contribute to the asymmetry in APSs. The asymmetry in CBS is possibly caused by a variable reduction in striatal D2 receptor binding, as demonstrated in single-photon emission computed tomography (SPECT) examinations, which may explain the disease's asymmetric manifestation and poor response to dopaminergic therapy. In PSP, clinical dysfunction correlates with white matter tract degeneration in the superior cerebellar peduncles and corpus callosum. MSA often involves atrophy in the pons, putamen, and cerebellum, with clinical symmetry potentially depending on the symmetry of the atrophy. The aim of this review is to present the study findings on potential symmetry as a tool for determining potential neuropsychological disturbances and properly diagnosing APSs to lessen the misdiagnosis rate. Methods: A comprehensive review of the academic literature was conducted using the medical literature available in PubMed. Appropriate studies were evaluated and examined based on patient characteristics and clinical and imaging examination outcomes in the context of potential asymmetry. Results: Among over 1000 patients whose data were collected, PSP-RS was symmetrical in approximately 84% ± 3% of cases, with S-CBD showing similar results. PSP-P was symmetrical in about 53-55% of cases, while PSP-CBS was symmetrical in fewer than half of the cases. MSA-C was symmetrical in around 40% of cases. It appears that MSA-P exhibits symmetry in about 15-35% of cases. CBS, according to the criteria, is a disease with an asymmetrical clinical presentation in 90-99% of cases. Similar results were obtained via imaging methods, but transcranial sonography produced different results. Conclusions: Determining neurodegeneration symmetry may help identify functional deficits and improve diagnostic accuracy. Patients with significant asymmetry in neurodegeneration may exhibit different neuropsychological symptoms based on their individual brain lateralization, impacting their cognitive functioning and quality of life.
Collapse
Affiliation(s)
- Patryk Chunowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.-A.); (P.A.)
| | | | | |
Collapse
|
2
|
Ferschmann C, Messerschmidt K, Gnörich J, Barthel H, Marek K, Palleis C, Katzdobler S, Stockbauer A, Fietzek U, Finze A, Biechele G, Rumpf JJ, Saur D, Schroeter ML, Rullmann M, Beyer L, Eckenweber F, Wall S, Schildan A, Patt M, Stephens A, Classen J, Bartenstein P, Seibyl J, Franzmeier N, Levin J, Höglinger GU, Sabri O, Brendel M, Scheifele M. Tau accumulation is associated with dopamine deficiency in vivo in four-repeat tauopathies. Eur J Nucl Med Mol Imaging 2024; 51:1909-1922. [PMID: 38366196 PMCID: PMC11139736 DOI: 10.1007/s00259-024-06637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (β = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (β = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (β = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.
Collapse
Affiliation(s)
- Christian Ferschmann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ken Marek
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Dorothee Saur
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - John Seibyl
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Klingstedt T, Lantz L, Shirani H, Ge J, Hanrieder J, Vidal R, Ghetti B, Nilsson KPR. Thiophene-Based Ligands for Specific Assignment of Distinct Aβ Pathologies in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1581-1595. [PMID: 38523263 PMCID: PMC10995944 DOI: 10.1021/acschemneuro.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Aggregated species of amyloid-β (Aβ) are one of the pathological hallmarks in Alzheimer's disease (AD), and ligands that selectively target different Aβ deposits are of great interest. In this study, fluorescent thiophene-based ligands have been used to illustrate the features of different types of Aβ deposits found in AD brain tissue. A dual-staining protocol based on two ligands, HS-276 and LL-1, with different photophysical and binding properties, was developed and applied on brain tissue sections from patients affected by sporadic AD or familial AD associated with the PSEN1 A431E mutation. When binding to Aβ deposits, the ligands could easily be distinguished for their different fluorescence, and distinct staining patterns were revealed for these two types of AD. In sporadic AD, HS-276 consistently labeled all immunopositive Aβ plaques, whereas LL-1 mainly stained cored and neuritic Aβ deposits. In the PSEN1 A431E cases, each ligand was binding to specific types of Aβ plaques. The ligand-labeled Aβ deposits were localized in distinct cortical layers, and a laminar staining pattern could be seen. Biochemical characterization of the Aβ aggregates in the individual layers also showed that the variation of ligand binding properties was associated with certain Aβ peptide signatures. For the PSEN1 A431E cases, it was concluded that LL-1 was binding to cotton wool plaques, whereas HS-276 mainly stained diffuse Aβ deposits. Overall, our findings showed that a combination of ligands was essential to identify distinct aggregated Aβ species associated with different forms of AD.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Linda Lantz
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Hamid Shirani
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Diseases, University
College London Institute of Neurology, Queen Square, London WC1N 3BG, United
Kingdom
| | - Ruben Vidal
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Bernardino Ghetti
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - K. Peter R. Nilsson
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| |
Collapse
|
5
|
Uzuegbunam BC, Li J, Paslawski W, Weber W, Svenningsson P, Ågren H, Hooshyar Yousefi B. In Silico and In Vitro Study towards the Rational Design of 4,4'-Disarylbisthiazoles as a Selective α-Synucleinopathy Biomarker. Int J Mol Sci 2023; 24:16445. [PMID: 38003637 PMCID: PMC10671360 DOI: 10.3390/ijms242216445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The α-synucleinopathies are a group of neurodegenerative diseases characterized by the deposition of α-synuclein aggregates (α-syn) in the brain. Currently, there is no suitable tracer to enable a definitive early diagnosis of these diseases. We reported candidates based on 4,4'-disarylbisthiazole (DABTA) scaffold with a high affinity towards α-syn and excellent selectivity over Aβ and tau fibrils. Based on prior in silico studies, a focused library of 23 halogen-containing and O-methylated DABTAs was prepared. The DABTAs were synthesized via a modified two-step Hantzsch thiazole synthesis, characterized, and used in competitive binding assays against [3H]PiB and [3H]DCVJ. The DABTAs were obtained with an overall chemical yield of 15-71%, and showed a calculated lipophilicity of 2.5-5.7. The ligands demonstrated an excellent affinity to α-syn with both [3H]PiB and [3H]DCVJ: Ki 0.1-4.9 nM and up to 20-3900-fold selectivity over Aβ and tau fibrils. It could be concluded that in silico simulation is useful for the rational design of a new generation of DABTAs. Further investigation of the leads in the next step is encouraged: radiolabeling of the ligands with radioisotopes such as fluorine-18 or carbon-11 for in vivo, ex vivo, and translational research and for further in vitro experiments on human-derived protein aggregates.
Collapse
Affiliation(s)
- Bright C. Uzuegbunam
- Department of Nuclear Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | | |
Collapse
|