1
|
Mckean NE, Handley RR, Snell RG. A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci 2021; 22:13168. [PMID: 34884970 PMCID: PMC8658123 DOI: 10.3390/ijms222313168] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then 'cured' in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.
Collapse
Affiliation(s)
- Natasha Elizabeth Mckean
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Renee Robyn Handley
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Russell Grant Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
3
|
Klenner MA, Pascali G, Fraser BH, Darwish TA. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nucl Med Biol 2021; 96-97:112-147. [PMID: 33892374 DOI: 10.1016/j.nucmedbio.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.
Collapse
Affiliation(s)
- Mitchell A Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Benjamin H Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Tamim A Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| |
Collapse
|
4
|
Klenner MA, Fraser BH, Moon V, Evans BJ, Massi M, Pascali G. Telescoping the Synthesis of the [
18
F]CABS13 Alzheimer's Disease Radiopharmaceutical via Flow Microfluidic Rhenium(I) Complexations. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell A. Klenner
- National Deuteration Facility (NDF) & Human Health Australian Nuclear Science and Technology Organisation (ANSTO) 2234 Lucas Heights NSW Australia
- School of Molecular and Life Sciences Curtin University 6102 Bentley WA. Australia
| | - Benjamin H. Fraser
- National Deuteration Facility (NDF) & Human Health Australian Nuclear Science and Technology Organisation (ANSTO) 2234 Lucas Heights NSW Australia
| | - Vaughan Moon
- National Deuteration Facility (NDF) & Human Health Australian Nuclear Science and Technology Organisation (ANSTO) 2234 Lucas Heights NSW Australia
- Department of Molecular Sciences Macquarie University 2109 Macquarie Park NSW Australia
| | - Brendan J. Evans
- National Deuteration Facility (NDF) & Human Health Australian Nuclear Science and Technology Organisation (ANSTO) 2234 Lucas Heights NSW Australia
- Department of Molecular Sciences Macquarie University 2109 Macquarie Park NSW Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University 6102 Bentley WA. Australia
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health Australian Nuclear Science and Technology Organisation (ANSTO) 2234 Lucas Heights NSW Australia
- Prince of Wales Hospital 2031 Randwick NSW Australia
- School of Chemistry University of New South Wales (UNSW) 2052 Kensington NSW Australia
| |
Collapse
|
5
|
Klenner MA, Darwish T, Fraser BH, Massi M, Pascali G. Labeled Rhenium Complexes: Radiofluorination, α-MSH Cyclization, and Deuterium Substitutions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell A. Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Tamim Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Benjamin H. Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- Prince of Wales Hospital, Randwick, New South Wales, Australia 2031
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales, Australia 2052
| |
Collapse
|
6
|
Yu HJ, Zhao W, Zhou Y, Cheng GJ, Sun M, Wang L, Yu L, Liang SH, Ran C. Salen-based bifunctional chemosensor for copper (II) ions: Inhibition of copper-induced amyloid-β aggregation. Anal Chim Acta 2020; 1097:144-152. [DOI: 10.1016/j.aca.2019.10.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
|
7
|
Klenner MA, Zhang B, Ciancaleoni G, Howard JK, Maynard-Casely HE, Clegg JK, Massi M, Fraser BH, Pascali G. Rhenium(i) complexation–dissociation strategy for synthesising fluorine-18 labelled pyridine bidentate radiotracers. RSC Adv 2020; 10:8853-8865. [PMID: 35496512 PMCID: PMC9049978 DOI: 10.1039/d0ra00318b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023] Open
Abstract
A novel fluorine-18 radiolabelling method employing rhenium(i) mediation is described herein. In less than 1 minute, fluorine-18 labelled complexes and ligands were synthesised in greater than 80% and 60% radiochemical yields (RCY), respectively.
Collapse
Affiliation(s)
- Mitchell A. Klenner
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
- School of Molecular and Life Sciences
- Curtin University
| | - Bo Zhang
- School of Chemistry
- Monash University
- Melbourne
- Australia
| | | | - James K. Howard
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
| | - Helen E. Maynard-Casely
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St. Lucia
- Australia
| | | | - Benjamin H. Fraser
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
| | - Giancarlo Pascali
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
- Brain and Mind Centre
- The University of Sydney
| |
Collapse
|
8
|
Wang R, Wang C, Dai Z, Chen Y, Shen Z, Xiao G, Chen Y, Zhou JN, Zhuang Z, Wu R. An Amyloid-β Targeting Chemical Exchange Saturation Transfer Probe for In Vivo Detection of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3859-3867. [PMID: 31343167 DOI: 10.1021/acschemneuro.9b00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A reliable and reproducible detection of Aβ deposits would be beneficial for the early diagnosis of Alzheimer's disease (AD). In the present study, the feasibility of applying chemical exchange saturation transfer (CEST) for Aβ deposit detection using angiopep-2 as a probe was evaluated, and it was demonstrated that CEST could detect angiopep-2 and Aβ-angiopep-2 aggregates in vitro. Furthermore, APP/PS1 mice injected with angiopep-2 exhibited a significantly higher in vivo CEST effect when compared with controls. The distribution of Aβ deposits detected by CEST imaging was consistent with the histological staining results. The present study is the first to report a reliable exogenous CEST probe to noninvasively evaluate Aβ deposits in APP/PS1 mice. Furthermore, these results demonstrate the potential for clinical AD diagnosis and Aβ-targeted drug therapy assessment using CEST imaging with the angiopep-2 probe.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Chenwei Wang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230000 , P. R. China
| | - Zhuozhi Dai
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Yanzi Chen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Zhiwei Shen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Gang Xiao
- Department of Mathematics and Statistics , Hanshan Normal University , Chaozhou 515000 , P. R. China
| | - Yuanfeng Chen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230000 , P. R. China
- Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zerui Zhuang
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Renhua Wu
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| |
Collapse
|
9
|
Lee SJ, Brooks AF, Ichiishi N, Makaravage KJ, Mossine AV, Sanford MS, Scott PJH. C-H 18F-fluorination of 8-methylquinolines with Ag[ 18F]F. Chem Commun (Camb) 2019; 55:2976-2979. [PMID: 30778496 PMCID: PMC6556205 DOI: 10.1039/c9cc00641a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report describes a Pd-mediated C-H radiofluorination of 8-methylquinoline derivatives with no-carrier-added Ag[18F]F. To achieve this transformation, a new method was developed for the generation of Ag[18F]F using a sep-pak cartridge. The C-H radiofluorination was then optimized and applied to a series of substituted 8-methylquinoline derivatives. Finally, this method was fully automated using a radiochemistry synthesis module.
Collapse
Affiliation(s)
- So Jeong Lee
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Krishnan HS, Bernard-Gauthier V, Placzek MS, Dahl K, Narayanaswami V, Livni E, Chen Z, Yang J, Collier TL, Ran C, Hooker JM, Liang SH, Vasdev N. Metal Protein-Attenuating Compound for PET Neuroimaging: Synthesis and Preclinical Evaluation of [11C]PBT2. Mol Pharm 2018; 15:695-702. [DOI: 10.1021/acs.molpharmaceut.7b00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hema S. Krishnan
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Vadim Bernard-Gauthier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael S. Placzek
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Kenneth Dahl
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Vidya Narayanaswami
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Elijahu Livni
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jing Yang
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Research
and Development, Advion Inc., Ithaca, New York 14850, United States
| | - Chongzhao Ran
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Neil Vasdev
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
DeGrado TR, Kemp BJ, Pandey MK, Jiang H, Gunderson TM, Linscheid LR, Woodwick AR, McConnell DM, Fletcher JG, Johnson GB, Petersen RC, Knopman DS, Lowe VJ. First PET Imaging Studies With 63Zn-Zinc Citrate in Healthy Human Participants and Patients With Alzheimer Disease. Mol Imaging 2016; 15:15/0/1536012116673793. [PMID: 27941122 PMCID: PMC5469518 DOI: 10.1177/1536012116673793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/23/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. Dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (∼330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden (11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD.
Collapse
Affiliation(s)
| | - Bradley J Kemp
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Tina M Gunderson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Cary BP, Brooks AF, Fawaz MV, Drake LR, Desmond TJ, Sherman P, Quesada CA, Scott PJH. Synthesis and Evaluation of [(18)F]RAGER: A First Generation Small-Molecule PET Radioligand Targeting the Receptor for Advanced Glycation Endproducts. ACS Chem Neurosci 2016; 7:391-8. [PMID: 26771209 DOI: 10.1021/acschemneuro.5b00319] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is a 35 kDa transmembrane receptor that belongs to the immunoglobulin superfamily of cell surface molecules. Its role in Alzheimer's disease (AD) is complex, but it is thought to mediate influx of circulating amyloid-β into the brain as well as amplify Aβ-induced pathogenic responses. RAGE is therefore of considerable interest as both a diagnostic and a therapeutic target in AD. Herein we report the synthesis and preliminary preclinical evaluation of [(18)F]RAGER, the first small molecule PET radiotracer for RAGE (Kd = 15 nM). Docking studies proposed a likely binding interaction between RAGE and RAGER, [(18)F]RAGER autoradiography showed colocalization with RAGE identified by immunohistochemistry in AD brain samples, and [(18)F]RAGER microPET confirmed CNS penetration and increased uptake in areas of the brain known to express RAGE. This first generation radiotracer represents initial proof-of-concept and a promising first step toward quantifying CNS RAGE activity using PET. However, there were high levels of nonspecific [(18)F]RAGER binding in vitro, likely due to its high log P (experimental log P = 3.5), and rapid metabolism of [(18)F]RAGER in rat liver microsome studies. Therefore, development of second generation ligands with improved imaging properties would be advantageous prior to anticipated translation into clinical PET imaging studies.
Collapse
Affiliation(s)
- Brian P. Cary
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Allen F. Brooks
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Maria V. Fawaz
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The
Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lindsey R. Drake
- The
Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy J. Desmond
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Phillip Sherman
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Carole A. Quesada
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The
Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Liang SH, Southon AG, Fraser BH, Krause-Heuer AM, Zhang B, Shoup TM, Lewis R, Volitakis I, Han Y, Greguric I, Bush AI, Vasdev N. Novel Fluorinated 8-Hydroxyquinoline Based Metal Ionophores for Exploring the Metal Hypothesis of Alzheimer's Disease. ACS Med Chem Lett 2015; 6:1025-9. [PMID: 26396692 DOI: 10.1021/acsmedchemlett.5b00281] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Zinc, copper, and iron ions are involved in amyloid-beta (Aβ) deposition and stabilization in Alzheimer's disease (AD). Consequently, metal binding agents that prevent metal-Aβ interaction and lead to the dissolution of Aβ deposits have become well sought therapeutic and diagnostic targets. However, direct intervention between diseases and metal abnormalities has been challenging and is partially attributed to the lack of a suitable agent to determine and modify metal concentration and distribution in vivo. In the search of metal ionophores, we have identified several promising chemical entities by strategic fluorination of 8-hydroxyquinoline drugs, clioquinol, and PBT2. Compounds 15-17 and 28-30 showed exceptional metal ionophore ability (6-40-fold increase of copper uptake and >2-fold increase of zinc uptake) and inhibition of zinc induced Aβ oligomerization (EC50s < ∼5 μM). These compounds are suitable for further development as drug candidates and/or positron emission tomography (PET) biomarkers if radiolabeled with (18)F.
Collapse
Affiliation(s)
- Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Adam G. Southon
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin H. Fraser
- Radiopharmaceutical
Research and Development, Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales 2232, Australia
| | - Anwen M. Krause-Heuer
- Radiopharmaceutical
Research and Development, Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales 2232, Australia
| | - Bo Zhang
- Radiopharmaceutical
Research and Development, Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales 2232, Australia
| | - Timothy M. Shoup
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rebecca Lewis
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Irene Volitakis
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yifeng Han
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology,
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ivan Greguric
- Radiopharmaceutical
Research and Development, Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales 2232, Australia
| | - Ashley I. Bush
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil Vasdev
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|