1
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
2
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
3
|
Breitinger U, Sticht H, Breitinger HG. Modulation of recombinant human alpha 1 glycine receptor by flavonoids and gingerols. Biol Chem 2021; 402:825-838. [PMID: 33752269 DOI: 10.1515/hsz-2020-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
The inhibitory glycine receptor (GlyR) is a principal mediator of fast synaptic inhibition in mammalian spinal cord, brainstem, and higher brain centres. Flavonoids are secondary plant metabolites that exhibit many beneficial physiological effects, including modulatory action on neuronal receptors. Using whole-cell current recordings from recombinant human α1 GlyRs, expressed in HEK293 cells, we compared the flavonols kaempferol and quercetin, the flavanone naringenin, the flavones apigenin and nobiletin, the isoflavone genistein, and two gingerols, 6-gingerol and 8-gingerol for their modulation of receptor currents. All compounds were inhibitors of the GlyR with IC50 values ranging between 9.3 ± 2.6 µM (kaempferol) and 46.7 ± 6.5 µM (genistein), following a mixed mode of inhibition. Co-application of two inhibitors revealed distinct binding sites for flavonoids and gingerols. Pore-lining mutants T258A and T258S were strongly inhibited by quercetin and naringenin, but not by 6-gingerol, confirming the existence of distinct binding sites for flavonoids and gingerols. Apigenin, kaempferol, nobiletin, naringenin and 6-gingerol showed biphasic action, potentiating glycine-induced currents at low concentration of both, modulator and glycine, and inhibiting at higher concentrations. Identification of distinct modulatory sites for flavonoids and related compounds may present pharmacological target sites and aid the discovery of novel glycinergic drugs.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo11835, Egypt
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nümberg, Fahrstrasse 17, D-91054Erlangen, Germany
| | - Hans-Georg Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo11835, Egypt
| |
Collapse
|
4
|
Hussein RA, Ahmed M, Sticht H, Breitinger HG, Breitinger U. Fine-Tuning of Neuronal Ion Channels-Mapping of Residues Involved in Glucose Sensitivity of Recombinant Human Glycine Receptors. ACS Chem Neurosci 2020; 11:3474-3483. [PMID: 33007159 DOI: 10.1021/acschemneuro.0c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The inhibitory glycine receptor (GlyR) mediates synaptic inhibition in the spinal cord, brain stem, and other regions of the mammalian central nervous system. Glucose was shown to potentiate α1 GlyRs by interacting with K143. Here, additional amino acids involved in glucose modulation were identified using a structure-based approach of site-directed mutagenesis followed by whole-cell patch-clamp analysis. We identified two additional lysine residues in the α1 GlyR extracellular domain, K16 and K281, that were involved in glucose modulation. Mutation of either residue to alanine abolished glucose potentiation. Residue K281 is located in the same pocket as K143 and could thus contribute to glucose binding. The double mutant K143A-K281A showed a 6-fold increase of EC50, while EC50 of both single mutants K143A and K281A was only slightly increased (1.7- and 1.3-fold, respectively). K16 is located at an analgesic binding site that is distant from the agonist or glucose sites, and the K16A mutation may generate a receptor species that is not potentiated. GlyR position α1-S267 is close to the postulated glucose binding site and known for interactions with ethanol and anesthetics. In the presence of glucose, GlyR α1 mutants S267A, S267I, and S267R showed potentiation, no effect, and reduction of current responses, respectively. This pattern follows that of ethanol modulation and suggests that the interaction sites of glucose and ethanol are identical or located close to each other. Our results support the presence of a distinct binding site for glucose on the glycine receptor, overlapping with the ivermectin/ethanol binding pocket near the transmembrane region and the TM2-3 loop.
Collapse
Affiliation(s)
- Rama Ashraf Hussein
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Marwa Ahmed
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Hans-Georg Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Abstract
The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing. These modulators are important for the study of receptor activation and regulation and have found clinical interest as potential analgesics and anticonvulsants. High-resolution structures of the receptor have become available recently, adding to our understanding of structure-function relationships and revealing agonistic, inhibitory, and modulatory sites on the receptor protein. This Review presents an overview of compounds that activate, inhibit, or modulate glycine receptor function in vitro and in vivo.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|
6
|
Ramadan S, Tammam SN, Shetab Boushehri MA, Breitinger HG, Breitinger U, Mansour S, Lamprecht A. Liposomal delivery of functional transmembrane ion channels into the cell membranes of target cells; a potential approach for the treatment of channelopathies. Int J Biol Macromol 2020; 153:1080-1089. [DOI: 10.1016/j.ijbiomac.2019.10.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
|
7
|
Hegazy NH, Breitinger HG, Breitinger U. Kavalactones from Kava (Piper methysticum) root extract as modulators of recombinant human glycine receptors. Biol Chem 2020; 400:1205-1215. [PMID: 31141476 DOI: 10.1515/hsz-2019-0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
Roots of kava (Piper methysticum) plant are used in almost all Pacific Ocean cultures to prepare a drink with sedative, anesthetic and euphoric properties. One of the main active ingredients of the extract are kava lactones. Here, kava root CO2 extract and three kavalactones, DL-kavain, dihydrokavain and yangonin (isolated from whole extract by column chromatography) were tested for their inhibitory action on recombinant homomeric human α1 glycine receptors expressed in HEK293 cells. Kava CO2 root extract, as well as the individual components DL-kavain, dihydrokavain and yangonin inhibited glycine receptor activity in a dose-dependent manner. DL-kavain was the most potent inhibitor (IC50 = 0.077 ± 0.002 mm), followed by yangonin (IC50 = 0.31 ± 0.04 mm) and dihydrokavain (IC50 = 3.23 ± 0.10 mm) which were 4- and 40-fold less active than DL-kavain, respectively. Application of kava root extract did not reduce maximum currents, but increased EC50 of glycine. Simultaneous application of kava extract and strychnine showed additive inhibition, suggesting that binding of kavalactones and strychnine on the receptor is mutually exclusive. Overall, kavalactones exert a moderate inhibitory effect on the human α1 glycine receptor with DL-kavain being the most potent constituent.
Collapse
Affiliation(s)
- Nada Hany Hegazy
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| |
Collapse
|
8
|
Hussein RA, Ahmed M, Breitinger HG, Breitinger U. Modulation of Glycine Receptor-Mediated Pain Signaling in vitro and in vivo by Glucose. Front Mol Neurosci 2019; 12:280. [PMID: 31824259 PMCID: PMC6883931 DOI: 10.3389/fnmol.2019.00280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/01/2019] [Indexed: 11/27/2022] Open
Abstract
The inhibitory glycine receptor (GlyR) plays an important role in rapid synaptic inhibition in mammalian spinal cord, brainstem, higher brain centers, and is involved in transmission of nociceptive signals. Glucose and related mono- and disaccharides potentiate currents mediated by recombinant α1, α1-β, and α3 GlyRs. Here, we confirmed the specific potentiation of α3 GlyR signaling by glucose through: (i) patch-clamp electrophysiology on recombinant receptors; and (ii) by verifying in vitro data in a mouse model in vivo. Mice were intraperitoneally (IP) injected with glucose (2 g/kg) or vehicle, and then challenged with sublethal doses of strychnine (0.2 mg/kg and 0.5 mg/kg). Pain-related behavior was assessed using two established models: (i) touch sensitivity tests using von Frey filaments; and (ii) hotplate assay. We observed a reduction of pain sensitivity in glucose-treated mice relative to vehicle-treated control mice. Injection of strychnine resulted in an increased sensitivity to tactile and heat stimuli, which was reversed in the presence of glucose. Analgesic effects of glucose were more pronounced in von Frey experiments, consistent with the established use of this model for neuropathic pain. Overall, glucose showed mild analgesic effects and was able to compensate for strychnine-induced allodynia in mice. Since the action of strychnine is specific for GlyR, these experiments show for the first time an in vivo potentiation of GlyR activity by glucose and suggest a molecular mechanism for glucose-mediated analgesia.
Collapse
Affiliation(s)
| | - Marwa Ahmed
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | | | - Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| |
Collapse
|
9
|
Sparling BA, DiMauro EF. Progress in the discovery of small molecule modulators of the Cys-loop superfamily receptors. Bioorg Med Chem Lett 2017; 27:3207-3218. [DOI: 10.1016/j.bmcl.2017.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
|
10
|
Chakka N, Andrews KL, Berry LM, Bregman H, Gunaydin H, Huang L, Guzman-Perez A, Plant MH, Simard JR, Gingras J, DiMauro EF. Applications of parallel synthetic lead hopping and pharmacophore-based virtual screening in the discovery of efficient glycine receptor potentiators. Eur J Med Chem 2017; 137:63-75. [PMID: 28575722 DOI: 10.1016/j.ejmech.2017.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
Glycine receptors (GlyRs) are pentameric glycine-gated chloride ion channels that are enriched in the brainstem and spinal cord where they have been demonstrated to play a role in central nervous system (CNS) inhibition. Herein we describe two novel classes of glycine receptor potentiators that have been developed using similarity- and property-guided scaffold hopping enabled by parallel synthesis and pharmacophore-based virtual screening strategies. This effort resulted in the identification of novel, efficient and modular leads having favorable in vitro ADME profiles and high CNS multi-parameter optimization (MPO) scores, exemplified by azetidine sulfonamide 19 and aminothiazole sulfone (ent2)-20.
Collapse
Affiliation(s)
- Nagasree Chakka
- Department of Medicinal Chemistry, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Kristin L Andrews
- Department of Molecular Engineering, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Loren M Berry
- Department of Pharmacokinetics, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Howard Bregman
- Department of Medicinal Chemistry, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Hakan Gunaydin
- Department of Molecular Engineering, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Liyue Huang
- Department of Pharmacokinetics, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Angel Guzman-Perez
- Department of Medicinal Chemistry, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Matthew H Plant
- Department of Discovery Attribute Sciences, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Jeffrey R Simard
- Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Jacinthe Gingras
- Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA
| | - Erin F DiMauro
- Department of Medicinal Chemistry, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Johnstone S, Albert JS. Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. Bioorg Med Chem Lett 2017; 27:2239-2258. [PMID: 28408223 DOI: 10.1016/j.bmcl.2017.03.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
New strategies to potentially improve drug safety and efficacy emerge with allosteric programs. Biased allosteric modulators can be designed with high subtype selectivity and defined receptor signaling endpoints, however, selecting the most meaningful parameters for optimization can be perplexing. Historically, "potency hunting" at the expense of physicochemical and pharmacokinetic optimization has led to numerous tool compounds with excellent pharmacological properties but no path to drug development. Conversely, extensive physicochemical and pharmacokinetic screening with only post hoc bias and allosteric characterization has led to inefficacious compounds or compounds with on-target toxicities. This field is rapidly evolving with new mechanistic understanding, changes in terminology, and novel opportunities. The intent of this digest is to summarize current understanding and debates within the field. We aim to discuss, from a medicinal chemistry perspective, the parameter choices available to drive SAR.
Collapse
Affiliation(s)
- Shawn Johnstone
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada.
| | - Jeffrey S Albert
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada; Department of Chemistry, AviSyn Pharma, 4275 Executive Square, Suite 200, La Jolla, CA 92037, United States.
| |
Collapse
|
12
|
Bregman H, Simard JR, Andrews KL, Ayube S, Chen H, Gunaydin H, Guzman-Perez A, Hu J, Huang L, Huang X, Krolikowski PH, Lehto SG, Lewis RT, Michelsen K, Pegman P, Plant MH, Shaffer PL, Teffera Y, Yi S, Zhang M, Gingras J, DiMauro EF. The Discovery and Hit-to-Lead Optimization of Tricyclic Sulfonamides as Potent and Efficacious Potentiators of Glycine Receptors. J Med Chem 2016; 60:1105-1125. [PMID: 28001399 DOI: 10.1021/acs.jmedchem.6b01496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current pain therapeutics suffer from undesirable psychotropic and sedative side effects, as well as abuse potential. Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels expressed in nerves of the spinal dorsal horn, where their activation is believed to reduce transmission of painful stimuli. Herein, we describe the identification and hit-to-lead optimization of a novel class of tricyclic sulfonamides as allosteric GlyR potentiators. Initial optimization of high-throughput screening (HTS) hit 1 led to the identification of 3, which demonstrated ex vivo potentiation of glycine-activated current in mouse dorsal horn neurons from spinal cord slices. Further improvement of potency and pharmacokinetics produced in vivo proof-of-concept tool molecule 20 (AM-1488), which reversed tactile allodynia in a mouse spared-nerve injury (SNI) model. Additional structural optimization provided highly potent potentiator 32 (AM-3607), which was cocrystallized with human GlyRα3cryst to afford the first described potentiator-bound X-ray cocrystal structure within this class of ligand-gated ion channels (LGICs).
Collapse
Affiliation(s)
| | - Jeffrey R Simard
- Department of Neuroscience, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | | | | - Sonya G Lehto
- Department of Neuroscience, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | - Maosheng Zhang
- Department of Neuroscience, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | |
Collapse
|