1
|
Zakirjanova GF, Giniatullin AR, Gafurova CR, Malomouzh AI, Fedorov NS, Khaziev AN, Tsentsevitsky AN, Petrov AM. Effects of cholesterol oxidase on neurotransmission and acetylcholine levels at the mice neuromuscular junctions. Arch Biochem Biophys 2023; 749:109803. [PMID: 37955112 DOI: 10.1016/j.abb.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.
Collapse
Affiliation(s)
- Guzalia F Zakirjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan National Research Technical University, 10, K. Marx Street, Kazan, 420111, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Arthur N Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia; Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.
| |
Collapse
|
2
|
Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 2023; 318:121507. [PMID: 36801470 DOI: 10.1016/j.lfs.2023.121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
AIMS Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Kamilla A Mukhutdinova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia.
| |
Collapse
|
3
|
Gupta A, Krupa P, Engberg O, Krupa M, Chaudhary A, Li MS, Huster D, Maiti S. Unusual Robustness of Neurotransmitter Vesicle Membranes against Serotonin-Induced Perturbations. J Phys Chem B 2023; 127:1947-1955. [PMID: 36795947 DOI: 10.1021/acs.jpcb.2c07464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Nature confines hundreds of millimolar of amphiphilic neurotransmitters, such as serotonin, in synaptic vesicles. This appears to be a puzzle, as the mechanical properties of lipid bilayer membranes of individual major polar lipid constituents of synaptic vesicles [phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS)] are significantly affected by serotonin, sometimes even at few millimolar concentrations. These properties are measured by atomic force microscopy, and their results are corroborated by molecular dynamics simulations. Complementary 2H solid-state NMR measurements also show that the lipid acyl chain order parameters are strongly affected by serotonin. The resolution of the puzzle lies in the remarkably different properties displayed by the mixture of these lipids, at molar ratios mimicking those of natural vesicles (PC:PE:PS:Cholesterol = 3:5:2:5). Bilayers constituting of these lipids are minimally perturbed by serotonin, and show only a graded response at physiological concentrations (>100 mM). Significantly, the cholesterol (up to 33% molar ratio) plays only a minor role in dictating these mechanical perturbations, with PC:PE:PS:Cholesterol = 3:5:2:5 and 3:5:2:0 showing similar perturbations. We infer that nature uses an emergent mechanical property of a specific mixture of lipids, all individually vulnerable to serotonin, to appropriately respond to physiological serotonin levels.
Collapse
Affiliation(s)
- Ankur Gupta
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Oskar Engberg
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Magdalena Krupa
- Institute of Computer Science, Polish Academy of Sciences, Warsaw 01-248, Poland
| | - Ankur Chaudhary
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Sudipta Maiti
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
4
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
5
|
Bykhovskaia M. SNARE complex alters the interactions of the Ca 2+ sensor synaptotagmin 1 with lipid bilayers. Biophys J 2021; 120:642-661. [PMID: 33453271 DOI: 10.1016/j.bpj.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.
Collapse
|
6
|
Merezhko M, Uronen RL, Huttunen HJ. The Cell Biology of Tau Secretion. Front Mol Neurosci 2020; 13:569818. [PMID: 33071756 PMCID: PMC7539664 DOI: 10.3389/fnmol.2020.569818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occur via cell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion. It now appears that instead of a single mechanism, cells can secrete tau via three coexisting pathways: (1) translocation through the plasma membrane; (2) membranous organelles-based secretion; and (3) ectosomal shedding. The relative importance of these pathways in the secretion of normal and pathological tau is still elusive, though. Moreover, glial cells contribute to tau propagation, and the involvement of different cell types, as well as different secretion pathways, complicates the understanding of prion-like propagation of tauopathy. One of the important regulators of tau secretion in neuronal activity, but its mechanistic connection to tau secretion remains unclear and may involve all three secretion pathways of tau. This review article summarizes recent advancements in the field of tau secretion with an emphasis on cell biological aspects of the secretion process and discusses the role of neuronal activity and glial cells in the spread of pathological forms of tau.
Collapse
Affiliation(s)
- Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Kiechle M, Grozdanov V, Danzer KM. The Role of Lipids in the Initiation of α-Synuclein Misfolding. Front Cell Dev Biol 2020; 8:562241. [PMID: 33042996 PMCID: PMC7523214 DOI: 10.3389/fcell.2020.562241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
The aggregation of α-synuclein (α-syn) is inseparably connected to Parkinson’s disease (PD). It is now well-established that certain forms of α-syn aggregates, oligomers and fibrils, can exert neurotoxicity in synucleinopathies. With the exception of rare familial forms, the vast majority of PD cases are idiopathic. Understanding the earliest molecular mechanisms that cause initial α-syn misfolding could help to explain why PD affects only some individuals and others not. Factors that chaperone the transition of α-syn’s physiological to pathological function are of particular interest, since they offer opportunities for intervention. The relationship between α-syn and lipids represents one of those factors. Membrane interaction is crucial for normal cellular function, but lipids also induce the aggregation of α-syn, causing cell toxicity. Also, disease-causing or risk-factor mutations in genes related to lipid metabolism like PLA2G6, SCARB2 or GBA1 highlight the close connection between PD and lipids. Despite the clear link, the ambivalent interaction has not been studied sufficiently so far. In this review, we address how α-syn interacts with lipids and how they can act as key factor for orchestrating toxic conversion of α-syn. Furthermore, we will discuss a scenario in which initial α-syn aggregation is determined by shifts in lipid/α-syn ratio as well as by dyshomeostasis of membrane bound/unbound state of α-syn.
Collapse
|
8
|
Sanguanini M, Baumann KN, Preet S, Chia S, Habchi J, Knowles TPJ, Vendruscolo M. Complexity in Lipid Membrane Composition Induces Resilience to Aβ 42 Aggregation. ACS Chem Neurosci 2020; 11:1347-1352. [PMID: 32212722 DOI: 10.1021/acschemneuro.0c00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The molecular origins of Alzheimer's disease are associated with the aggregation of the amyloid-β peptide (Aβ). This process is controlled by a complex cellular homeostasis system, which involves a variety of components, including proteins, metabolites, and lipids. It has been shown in particular that certain components of lipid membranes can speed up Aβ aggregation. This observation prompts the question of whether there are protective cellular mechanisms to counterbalance this effect. Here, to address this issue, we investigate the role of the composition of lipid membranes in modulating the aggregation process of Aβ. By adopting a chemical kinetics approach, we first identify a panel of lipids that affect the aggregation of the 42-residue form of Aβ (Aβ42), ranging from enhancement to inhibition. We then show that these effects tend to average out in mixtures of these lipids, as such mixtures buffer extreme aggregation behaviors as the number of components increases. These results indicate that a degree of quality control on protein aggregation can be achieved through a mechanism by which an increase in the molecular complexity of lipid membranes balances opposite effects and creates resilience to aggregation.
Collapse
Affiliation(s)
- Michele Sanguanini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kevin N. Baumann
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Swapan Preet
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
9
|
Abstract
How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation. The clostridial neurotoxins (CNTs) comprise tetanus toxin (TT) and botulinum neurotoxin (BoNT [BT]) serotypes (A to G and X) and several recently identified CNT-like proteins, including BT/En and the mosquito BoNT-like toxin Pmp1. CNTs are produced as single proteins cleaved to a light chain (LC) and a heavy chain (HC) connected by an interchain disulfide bond. LC is a zinc metalloprotease (cleaving soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]), while HC contains an N-terminal translocation domain (HCN) and a C-terminal receptor binding domain (HCC). HCN-mediated LC translocation is the least understood function of CNT action. Here, β-lactamase (βlac) was used as a reporter in discovery-based live-cell assays to characterize TT-mediated LC translocation. Directed mutagenesis identified a role for a charged loop (767DKE769) connecting α15 and α16 (cis-loop) within HCN in LC translocation; aliphatic substitution inhibited LC translocation but not other toxin functions such as cell binding, intracellular trafficking, or HCN-mediated pore formation. K768 was conserved among the CNTs. In molecular simulations of the HCN with a membrane, the cis-loop did not bind with the cell membrane. Taken together, the results of these studies implicate the cis-loop in LC translocation, independently of pore formation. IMPORTANCE How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation.
Collapse
|
10
|
Bhasne K, Jain N, Karnawat R, Arya S, Majumdar A, Singh A, Mukhopadhyay S. Discerning Dynamic Signatures of Membrane-Bound α-Synuclein Using Site-Specific Fluorescence Depolarization Kinetics. J Phys Chem B 2020; 124:708-717. [PMID: 31917569 DOI: 10.1021/acs.jpcb.9b09118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Synuclein is an intrinsically disordered protein that adopts an α-helical structure upon binding to the negatively charged lipid membrane. Binding-induced conformational change of α-synuclein plays a crucial role in the regulation of synaptic plasticity. In this work, we utilized the fluorescence depolarization kinetics methodology to gain the site-specific dynamical insights into the membrane-bound α-synuclein. We took advantage of the nonoccurrence of Cys in α-synuclein and created single-Cys variants at different sites for us to be able to label it with a thiol-active fluorophore. Our fluorescence depolarization results reveal the presence of three dynamically distinct types of motions of α-synuclein on POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) small unilamellar vesicles (SUVs): (i) the (local) wobbling-in-cone motion of the fluorophore on the subnanosecond timescale, (ii) the backbone segmental mobility on the nanosecond timescale, and (iii) a slow depolarization component with a characteristic long rotational correlation time (∼60 ns) that is independent of the residue position. This characteristic timescale could potentially arise due to global tumbling of the protein-membrane complex, the global reorientation of only the protein within the membrane, and/or the translation diffusion of the protein on the curved membrane surface that could result in fluorescence depolarization due to the angular displacement of the transition dipole. In order to discern the molecular origin of the characteristic long rotational correlation time, we then carried our depolarization experiments varying the curvature of the membrane and varying the binding affinity by changing the lipid headgroup. These experiments revealed that the long rotational correlation time primarily arises due to the translational diffusion of α-synuclein on the curved membrane surface with a diffusion coefficient of ∼8.7 × 10-10 m2/s. The site-specific fluorescence depolarization methodology will find broad application in quantifying diffusion of a wide range of membrane-associated proteins involved in functions and diseases.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Neha Jain
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Rishabh Karnawat
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Shruti Arya
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anupa Majumdar
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anubhuti Singh
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| |
Collapse
|
11
|
A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol Neurobiol 2019; 57:910-925. [PMID: 31595461 PMCID: PMC7031182 DOI: 10.1007/s12035-019-01775-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Synaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a membrane-buried binding site, it adheres on the membrane and, then, travels along its plane towards the receptor. In contrast, lipophobic NTs, which are destined to bind into receptors with extracellular binding sites, prefer the water phase. This membrane-based sorting splits the neurotransmission into membrane-independent and membrane-dependent mechanisms and should make the NT binding into the receptors more efficient than random diffusion would allow. The potential implications and notable exceptions to the mechanisms are discussed here. Importantly, maintaining specific membrane lipid compositions (MLCs) at the synapses, especially regarding anionic lipids, affect the level of NT-membrane association. These effects provide a plausible link between the MLC imbalances and neurological diseases such as depression or Parkinson’s disease. Moreover, the membrane plays a vital role in other phases of the NT life cycle, including storage and release from the synaptic vesicles, transport from the synaptic cleft, as well as their synthesis and degradation.
Collapse
|
12
|
Naik AR, Kuhn ER, Lewis KT, Kokotovich KM, Maddipati KR, Chen X, Hörber JHK, Taatjes DJ, Potoff JJ, Jena BP. Self-Assembly and Biogenesis of the Cellular Membrane are Dictated by Membrane Stretch and Composition. J Phys Chem B 2019; 123:6997-7005. [PMID: 31322890 DOI: 10.1021/acs.jpcb.9b04769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell plasma membrane is a highly dynamic organelle governing a wide range of cellular activities including ion transport, secretion, cell division, growth, and development. The fundamental process involved in the addition of new membranes to pre-existing plasma membranes, however, is unclear. Here, we report, using biophysical, morphological, biochemical, and molecular dynamic simulations, the selective incorporation of proteins and lipids from the cytosol into the cell plasma membrane dictated by membrane stretch and composition. Stretching of the cell membrane as a consequence of volume increase following incubation in a hypotonic solution and results in the incorporation of cytosolic proteins and lipids into the existing plasma membrane. Molecular dynamic simulations further confirm that increased membrane stretch results in the rapid insertion of lipids into the existing plasma membrane. Similarly, depletion of cholesterol from the cell plasma membrane selectively alters the incorporation of lipids into the membrane.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J H K Hörber
- Department of Physics , University of Bristol , Bristol BS8 1TD , U.K
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center , University of Vermont College of Medicine , Burlington , Vermont 05405 , United States
| | | | | |
Collapse
|