1
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
2
|
Otte L, Wilde M, Auwärter V, Grafinger KE. Investigation of the μ and κ‐opioid receptor activation by eight new synthetic opioids using the [
35
S]‐GTPγS assay: U‐47700, isopropyl U‐47700, U‐49900, U‐47931E,
N
‐methyl U‐47931E, U‐51754, U‐48520 and U‐48800. Drug Test Anal 2022; 14:1187-1199. [DOI: 10.1002/dta.3238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Lorina Otte
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Maurice Wilde
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
- Hermann Staudinger Graduate School University of Freiburg Freiburg Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| |
Collapse
|
3
|
Pharmacological and metabolic characterization of the novel synthetic opioid brorphine and its detection in routine casework. Forensic Sci Int 2021; 327:110989. [PMID: 34509061 DOI: 10.1016/j.forsciint.2021.110989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022]
Abstract
After their first emergence in 2009, Novel synthetic opioids (NSO) have become an emerging class of New Psychoactive Substances (NPS) on the market for these new drugs. So far, 67 NSO have been reported to the Early Warning system of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). It is presumed that NSO mainly target the four known opioid receptors, i.e. the μ-opioid (MOR), the δ-opioid (DOR), the κ-opioid (KOR) and nociceptin receptors and that their consumption can result in serious adverse effects such as massive respiratory depression or death. In the present study we investigated the in vivo and in vitro metabolism of brorphine, a NSO that was first identified on the NPS market in August 2019 in the United States, using both a pooled human liver microsome assay and real forensic case samples. For the detection of metabolites LC-HR-MS/MS was used and quantification of brorphine was performed using an LC-MS/MS method. Additionally, we pharmacologically characterized brorphine regarding its activation of the MOR and KOR via G protein recruitment using the [35S]-GTPγS assay. In forensic urine samples, 14 distinct metabolites were identified, whereas in blood only four metabolites could be found. The pooled human liver microsome assay generated six distinct in vitro phase I metabolites. The most prominent in vivo metabolite was formed by N-oxydation, whereas the main in vitro metabolite was formed by hydroxylation. The pharmacological characterization at the MOR and KOR revealed brorphine to be a potent MOR agonist and a weak, partial KOR agonist in the [35S]-GTPγS assay.
Collapse
|
4
|
Henry S, Anand JP, Brinkel AC, McMillan DM, Twarozynski JJ, Loo CE, Traynor JR, Mosberg HI. SAR Matrices Enable Discovery of Mixed Efficacy μ-Opioid Receptor Agonist Peptidomimetics with Simplified Structures through an Aromatic-Amine Pharmacophore. ACS Chem Neurosci 2021; 12:216-233. [PMID: 33346631 PMCID: PMC9923772 DOI: 10.1021/acschemneuro.0c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously described the development of potent μ-opioid receptor (MOR)-agonist/δ-opioid receptor (DOR)-antagonist peptidomimetic ligands as an approach toward effective analgesics with reduced side effects. In this series, a tetrahydroquinoline (THQ) or substituted phenyl is employed to link two key pharmacophore elements, a dimethyltyrosine amino acid and typically an aromatic pendant. Using new and previously reported analogues, we constructed a structure-activity relationship (SAR) matrix that probes the utility of previously reported amine pendants. This matrix reveals that the MOR-agonist/DOR-antagonist properties of these ligands do not change when a tetrahydroisoquinoline (THIQ) pendant is used, despite removal of substituents on the core phenyl ring. Based on this observation, we retained the THIQ pendant and replaced the phenyl core with simpler aliphatic chain structures. These simpler analogues proved to be potent MOR-agonists with high variability in their effects at the DOR and the κ-opioid receptor (KOR). These data show that the amine of the THIQ pendant may be a novel pharmacophore element that favors high MOR-efficacy, whereas the aromatic ring of the THIQ pendant may produce high MOR-potency. Combined, the two pharmacophores within the THIQ pendant may be a structurally efficient means of converting opioid peptides and peptidomimetics into potent and efficacious MOR-agonists.
Collapse
Affiliation(s)
- Sean Henry
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, Medical School and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashley C. Brinkel
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Douglas M. McMillan
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jack. J. Twarozynski
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christian E. Loo
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Medicinal Chemistry, College of Pharmacy, Department of Pharmacology, Medical School, and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy and Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Achuenu C, Carret S, Poisson J, Berthiol F. Application of Chiral Sulfinamides into Formation and Reduction of Sulfinylketimines to Obtain Valuable α‐Chiral Primary Amines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chukuka Achuenu
- Département de Chimie Moléculaire (SERCO) UMR CNRS‐UGA5250, ICMG FR‐2607 Université Grenoble Alpes 301 Rue de la Chimie, BP 53 38058 Grenoble Cedex 9 France
| | - Sébastien Carret
- Département de Chimie Moléculaire (SERCO) UMR CNRS‐UGA5250, ICMG FR‐2607 Université Grenoble Alpes 301 Rue de la Chimie, BP 53 38058 Grenoble Cedex 9 France
| | - Jean‐François Poisson
- Département de Chimie Moléculaire (SERCO) UMR CNRS‐UGA5250, ICMG FR‐2607 Université Grenoble Alpes 301 Rue de la Chimie, BP 53 38058 Grenoble Cedex 9 France
| | - Florian Berthiol
- Département de Chimie Moléculaire (SERCO) UMR CNRS‐UGA5250, ICMG FR‐2607 Université Grenoble Alpes 301 Rue de la Chimie, BP 53 38058 Grenoble Cedex 9 France
| |
Collapse
|
6
|
Henry S, Anand JP, Twarozynski JJ, Brinkel AC, Pogozheva ID, Sears BF, Jutkiewicz EM, Traynor JR, Mosberg HI. Aromatic-Amine Pendants Produce Highly Potent and Efficacious Mixed Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Peptidomimetics with Enhanced Metabolic Stability. J Med Chem 2020; 63:1671-1683. [PMID: 31986033 DOI: 10.1021/acs.jmedchem.9b01818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported a novel SAR campaign that converted a metabolically unstable series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist bicyclic core peptidomimetics with promising analgesic activity and reduced abuse liabilities into a more stable series of benzylic core analogues. Herein, we expanded the SAR of that campaign and determined that the incorporation of amines into the benzylic pendant produces enhanced MOR-efficacy in this series, whereas the reincorporation of an aromatic ring into the pendant enhanced MOR-potency. Two compounds, which contain a piperidine (14) or an isoindoline (17) pendant, retained the desired opioid profile in vitro, possessed metabolic half-lives of greater than 1 h in mouse liver microsomes (MLMs), and were active antinociceptive agents in the acetic acid stretch assay (AASA) at subcutaneous doses of 1 mg/kg.
Collapse
Affiliation(s)
- Sean Henry
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Jessica P Anand
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jack J Twarozynski
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ashley C Brinkel
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Bryan F Sears
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Emily M Jutkiewicz
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - John R Traynor
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States.,Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
7
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Henry SP, Fernandez TJ, Anand JP, Griggs NW, Traynor JR, Mosberg HI. Structural Simplification of a Tetrahydroquinoline-Core Peptidomimetic μ-Opioid Receptor (MOR) Agonist/δ-Opioid Receptor (DOR) Antagonist Produces Improved Metabolic Stability. J Med Chem 2019; 62:4142-4157. [PMID: 30924650 DOI: 10.1021/acs.jmedchem.9b00219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands to serve as potential nonaddictive opioid analgesics. These ligands have been shown to be active in vivo, do not manifest withdrawal syndromes or reward behavior in conditioned-place preference assays in mice, and do not produce dependence. Although these attributes are promising, these analogues exhibit poor metabolic stability in mouse liver microsomes, likely due to the central tetrahydroquinoline scaffold in this series. As such, a structure-activity relationship (SAR) campaign was pursued to improve their metabolic stability. This resulted in a shift from our original bicyclic tetrahydroquinoline core to a monocyclic benzylic-core system. By eliminating one of the rings in this scaffold and exploring the SAR of this new core, two promising analogues were discovered. These analogues (5l and 5m) had potency and efficacy values at MOR better or comparable to morphine, retained their DOR-antagonist properties, and showed a 10-fold improvement in metabolic stability.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | | | | | | | - John R Traynor
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
9
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|