1
|
Musa M, Bello M, Agwamba EC. Synthesis, Molecular Docking, and Anticancer Screening of Ester-Based Thiazole Derivatives. Chem Biodivers 2024; 21:e202401159. [PMID: 39292150 DOI: 10.1002/cbdv.202401159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
This study investigates the potential of five compounds as novel anticancer agents. We examined their efficacy, mechanisms of action, and impact on various cancer cell lines, through a comprehensive set of experiments. Notably, compound 3e demonstrated superior activity compared to the positive control cisplatin, with a GI50 value of 6.3±0.7 μM against the breast cancer cell line (MCF-7). Compound 3b also displayed remarkable growth inhibition, yielding GI50 values of 8.7±0.2 μM (MCF-7) and 8.9±0.5 μM against the colon cancer cell line (HCT-116). Cell count experiments further confirmed the potent inhibitory effects of compounds 3e, 3b, and 3c on MCF-7 and HCT-116 cell growth. Compound 3e demonstrated a reduction of 55-60 % at GI50 and complete inhibition (100 %) at 2x GI50. Compound 3b exhibited 50-55 % reduction (GI50) and 90-95 % inhibition (2x GI50) in HCT-116 cells. Compound 3c displayed 75-80 % inhibition (2x GI50) and 35-40 % inhibition (GI50) in HCT-116 cells. In-depth mechanistic investigations unveiled valuable insights into the mode of action of compound 3e. The cell-cycle assay demonstrated G2/M phase arrest, DNA damage, and caspase-mediated apoptosis in both MCF-7 and HCT-116 cells. Caspase activation indicated a significant increase in apoptosis following exposure to compound 3e. Furthermore, compound 3e induced reactive oxygen species (ROS) production, influencing HCT-116 and MCF-7 cells differently. Elevated ROS production in HCT-116 cells and distinct effects in MCF-7 cells contribute to a deeper understanding of the cytotoxic mechanisms of compound 3e. Overall, these findings highlight the potential of the investigated compounds, particularly compound 3e, as effective inducers of apoptosis in cancer cells. Mechanistic insights into cell cycle arrest, caspase-mediated apoptosis, and ROS modulation provide a comprehensive understanding of their cytotoxic effects. This study offers significant contribution to the development of promising anticancer agents and their therapeutic applications.
Collapse
Affiliation(s)
- Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Sokoto State, Nigeria
| | - Muhammadu Bello
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Sokoto State, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| |
Collapse
|
2
|
Chen D, Zhang M, Zhang Q, Wu S, Yu B, Zhang X, Hu X, Zhang S, Yang Z, Kuang J, Xu B, Fang Q. The blockade of neuropeptide FF receptor 1 and 2 differentially contributed to the modulating effects on fentanyl-induced analgesia and hyperalgesia in mice. Eur J Pharmacol 2024; 969:176457. [PMID: 38395375 DOI: 10.1016/j.ejphar.2024.176457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Neuropeptide FF (NPFF) plays a critical role in various physiological processes through the activation of neuropeptide FF receptor 1 and 2 (NPFFR1 and NPFFR2). Numerous evidence has indicated that NPFF exhibits opposite opioid-modulating effects on opioid-induced analgesia after supraspinal and spinal administrations, while the detailed role of NPFFR1 and NPFFR2 remains unclear. In this study, we employed pharmacological and genetic inhibition of NPFFR to investigate the modulating roles of central NPFFR1 and NPFFR2 in opioid-induced analgesia and hyperalgesia, using a male mouse model of acute fentanyl-induced analgesia and secondary hyperalgesia. Our findings revealed that intrathecal (i.t.) injection of the nonselective NPFFR antagonist RF9 significantly enhanced fentanyl-induced analgesia, whereas intracerebroventricular (i.c.v.) injection did not show the same effect. Moreover, NPFFR2 deficient (npffr2-/-) mice exhibited stronger analgesic responses to fentanyl compared to wild type (WT) or NPFFR1 knockout (npffr1-/-) mice. Intrathecal injection of RF9 in npffr1-/- mice also significantly enhanced fentanyl-induced analgesia. These results indicate a crucial role of spinal NPFFR2 in the enhancement of opioid analgesia. Contrastingly, hyperalgesia induced by fentanyl was markedly reversed in npffr1-/- mice but remained unaffected in npffr2-/- mice. Similarly, i.c.v. injection of the selective NPFFR1 antagonist RF3286 effectively prevented fentanyl-induced hyperalgesia in WT or npffr2-/- mice. Notably, co-administration of i.c.v. RF3286 and i.t. RF9 augmented fentanyl-induced analgesia while reducing hyperalgesia. Collectively, these findings highlight the modulating effects of blocking spinal NPFFR2 and supraspinal NPFFR1 on fentanyl-induced analgesia and hyperalgesia, respectively, which shed a light on understanding the pharmacological function of NPFF system in future studies.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junzhe Kuang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Galal KA, Obeng S, Pallares VLC, Senetra A, Seabra MABL, Awad A, McCurdy CR. Guanidine-to-piperidine switch affords high affinity small molecule NPFF ligands with preference for NPFF1-R and NPFF2-R subtypes. Eur J Med Chem 2024; 269:116330. [PMID: 38522114 DOI: 10.1016/j.ejmech.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The Neuropeptide FF (NPFF) receptor system is known to modulate opioid actions and has been shown to mediate opioid-induced hyperalgesia and tolerance. The lack of subtype selective small molecule compounds has hampered further exploration of the pharmacology of this receptor system. The vast majority of available NPFF ligands possess a highly basic guanidine group, including our lead small molecule, MES304. Despite providing strong receptor binding, the guanidine group presents a potential pharmacokinetic liability for in vivo pharmacological tool development. Through structure-activity relationship exploration, we were able to modify our lead molecule MES304 to arrive at guanidine-free NPFF ligands. The novel piperidine analogues 8b and 16a are among the few non-guanidine based NPFF ligands known in literature. Both compounds displayed nanomolar NPFF-R binding affinity approaching that of the parent molecule. Moreover, while MES304 was non-subtype selective, these two analogues presented new starting points for subtype selective scaffolds, whereby 8b displayed a 15-fold preference for NPFF1-R, and 16a demonstrated an 8-fold preference for NPFF2-R. Both analogues showed no agonist activity on either receptor subtype in the in vitro functional activity assay, while 8b displayed antagonistic properties at NPFF1-R. The calculated physicochemical properties of 8b and 16a were also shown to be more favorable for in vivo tool design. These results indicate the possibility of developing potent, subtype selective NPFF ligands devoid of a guanidine functionality.
Collapse
Affiliation(s)
- Kareem A Galal
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA.
| | - Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Victoria L C Pallares
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Alexandria Senetra
- Department of Pharmaceutics, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Maria A B L Seabra
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Ahmed Awad
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutics, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; UF Translational Drug Development Core, The University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Mehmood H, Musa M, Woodward S, Hossan MS, Bradshaw TD, Haroon M, Nortcliffe A, Akhtar T. Design, and synthesis of selectively anticancer 4-cyanophenyl substituted thiazol-2-ylhydrazones. RSC Adv 2022; 12:34126-34141. [PMID: 36540407 PMCID: PMC9704493 DOI: 10.1039/d2ra03226k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/18/2022] [Indexed: 04/24/2024] Open
Abstract
Cyclization of substituted thiosemicarbazones with α-bromo-4-cyanoacetophenone allows rapid single-step sustainable syntheses of 4-cyanophenyl-2-hydrazinylthiazoles libraries (30 examples, 66-79%). All show anticancer efficacy against HCT-116 and MCF-7 carcinoma cell lines with the majority being more active than cisplatin positive controls. The compounds 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f) and 2-(2-((pentafluorophenyl)methylene)-hydrazinyl)-4-(4-cyanophenyl)thiazole (3a') show optimal GI50 values (1.0 ± 0.1 μM and 1.7 ± 0.3 μM) against MCF-7 breast cancer cells. Against colorectal carcinoma HCT-116 cells, (2-(2-(3-bromothiophen-2-yl)methylene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3b'), 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f), 2-(2-(2,6-dichlorobenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3n) and 2-(2-(1-(4-fluorophenyl)ethylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3w) are the most active (GI50 values: 1.6 ± 0.2, 1.6 ± 0.1, 1.1 ± 0.5 and 1.5 ± 0.8 μM respectively). Control studies with MRC-5 cells indicate appreciable selectivity towards the cancer cells targeted. Significant (p < 0.005) growth inhibition and cytotoxicity effects for the thiazoles 3 were corroborated by cell count and clonogenic assays using the same cancer cell lines at 5 and 10 μM agent concentrations. Cell cycle, caspase activation and Western blot assays demonstrated that compounds 3b' and 3f induce cancer cell death via caspase-dependent apoptosis. The combination of straight forward synthesis and high activity makes the thiazoles 3 an interesting lead for further development.
Collapse
Affiliation(s)
- Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Md Shahadat Hossan
- School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Andrew Nortcliffe
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| |
Collapse
|
5
|
Tayade K, Yeom GS, Sahoo SK, Puschmann H, Nimse SB, Kuwar A. Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative. Antioxidants (Basel) 2022; 11:2138. [PMID: 36358512 PMCID: PMC9686989 DOI: 10.3390/antiox11112138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
The hydrazine derivatives are known to possess several biological activities including anticancer, antibacterial and anti-fungal, anticonvulsant, and antioxidant. This communication presents the synthesis, X-ray crystal structure analysis, DFT calculations, cell cytotoxicity, and antioxidant activity of the Schiff base 4,4'-((1E,1'E)-hydrazine-1,2-diylidenebis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (compound 2). We have also isolated the side product compound 1 and characterized it using single X-ray crystallography. The crystal structure of compound 1 depicts that the ensuing C-H···N hydrogen bonding interaction is presented and discussed herein. In addition, the calculations using density functional theory (DFT) approximation supported by experimental 1H and 13C NMR studies on the key compound 2 are reported. The results of theoretical and experimental 1H and 13C NMR were concordant. The antioxidant activity of compound 2 was determined by using 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+) radical cation assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. Compound 2 demonstrated excellent antioxidant activity in ABTS assay (IC50 = 4.30 ± 0.21 µM) and DPPH assay (IC50 = 81.06 ± 0.72 µM) with almost no cytotoxicity below 25 µM.
Collapse
Affiliation(s)
- Kundan Tayade
- School of Chemical Sciences, North Maharashtra University, Jalgaon 425001, India
- Department of Chemistry and Analytical Chemistry, Rajarshi Shahu Mahavidyalaya, Latur 413512, India
| | - Gyu-Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| | - Suban K. Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat 395007, India
| | - Horst Puschmann
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| | - Anil Kuwar
- School of Chemical Sciences, North Maharashtra University, Jalgaon 425001, India
| |
Collapse
|
6
|
Arshad R, Khan MA, Mutahir S, Hussain S, Al-Hazmi GH, Refat MS. DFT, Molecular Docking and ADME Studies of Thiazolidinones as Tyrosinase Inhibitors. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Raqeeba Arshad
- Department of Chemistry, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Asim Khan
- Department of Chemistry, University of Sialkot, Sialkot, Pakistan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Sadaf Mutahir
- Department of Chemistry, University of Sialkot, Sialkot, Pakistan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Sufyan Hussain
- Department of Chemistry, University of Sialkot, Sialkot, Pakistan
| | - Ghaferah H. Al-Hazmi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S. Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Fmoc solid-phase synthesis of RF9 optimization with mass spectrometry verification. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The RF9 compound, which is an antagonist of the FF neuropeptide receptors is used as a therapeutic substance to improve the effectiveness of opioids in the chronic treatment of pain. The purpose of this study was to find the most efficient method of RF9 synthesis. The optimization experiment involved solid-phase peptide synthesis. The Fmoc strategy is based on the usage of the 9-fluorenylmethoxycarbonyl group to block reactive amino groups. Commonly applied RF9 synthesis is based on DIC/HOBt activation of 1-adamantanecarboxylic acid prior to its substitution. The experiments carried out in this research were based on the routinely applied DIC/HOBt carboxylic group activation and this scheme was compared with the COMU/DIPEA and DIC approach. The obtained results showed that COMU/DIPEA was the most efficient and effective method of RF9 synthesis. Using this strategy, pure compound was obtained, without any by-products, and at a highest yield. The use of COMU/DIPEA can be an excellent alternative to the routinely used RF9 synthesis.
Collapse
|
8
|
Wang J, Takahashi K, Shoup TM, Gong L, Li Y, El Fakhri G, Zhang Z, Brownell AL. Organomediated Cleavage of Benzoyl Group Enables an Efficient Synthesis of 1- (6-Nitropyridin-2-yl)thiourea and its application for developing 18F-labeled PET Tracers. Bioorg Chem 2022; 124:105804. [DOI: 10.1016/j.bioorg.2022.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
|
9
|
Astakhov AV, Tarasova EV, Chernysheva AV, Rybakov VB, Starikova ZA, Chernyshev VM. Tautomerism and basicity of carboxylic acid guanyl hydrazides (acylaminoguanidines). Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
de Aquino TM, França PHB, Rodrigues ÉEES, Nascimento IJS, Santos-Júnior PFS, Aquino PGV, Santos MS, Queiroz AC, Araújo MV, Alexandre-Moreira MS, Rodrigues RRL, Rodrigues KAF, Freitas JD, Bricard J, Meneghetti MR, Bourguignon JJ, Schmitt M, da Silva-Júnior EF, de Araújo-Júnior JX. Synthesis, Antileishmanial Activity and in silico Studies of Aminoguanidine Hydrazones (AGH) and Thiosemicarbazones (TSC) Against Leishmania chagasi Amastigotes. Med Chem 2021; 18:151-169. [PMID: 33593264 DOI: 10.2174/1573406417666210216154428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. OBJECTIVE Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "in-house" library of both AGH and TSC derivatives and their structurally-related compounds. METHOD A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. RESULT The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. CONCLUSION The promising antileishmanial activity of three AGH's and three TSC's was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are under progress, which will help to choose the best hits for in vivo experiments.
Collapse
Affiliation(s)
- Thiago M de Aquino
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Paulo H B França
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Érica E E S Rodrigues
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Igor J S Nascimento
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Paulo F S Santos-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Pedro G V Aquino
- Federal Rural University of Pernambuco, Garanhuns-PE, 55292-270. Brazil
| | - Mariana S Santos
- Federal Rural University of Pernambuco, Garanhuns-PE, 55292-270. Brazil
| | - Aline C Queiroz
- Laboratory of Pharmacology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Morgana V Araújo
- Laboratory of Pharmacology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Magna S Alexandre-Moreira
- Laboratory of Pharmacology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Raiza R L Rodrigues
- Laboratory of Infectious Diseases, Federal University of Parnaíba Delta, 64202-020, Parnaíba-PI. Brazil
| | - Klinger A F Rodrigues
- Laboratory of Infectious Diseases, Federal University of Parnaíba Delta, 64202-020, Parnaíba-PI. Brazil
| | - Johnnatan D Freitas
- Instrumental Analysis Laboratory, Federal Institute of Alagoas, Campus Maceió, Ferroviário Avenue, 57020-600, Maceió-AL. Brazil
| | - Jacques Bricard
- Laboratoire d'Innovation thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch. France
| | - Mario R Meneghetti
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-90 0, Maceió-AL. Brazil
| | - Jean-Jacques Bourguignon
- Laboratoire d'Innovation thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch. France
| | - Martine Schmitt
- Laboratoire d'Innovation thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch. France
| | - Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - João X de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| |
Collapse
|
11
|
Santos-Junior PFDS, Nascimento IJDS, da Silva ECD, Monteiro KLC, de Freitas JD, de Lima Lins S, Maciel TMS, Cavalcanti BC, V. Neto JDB, de Abreu FC, Figueiredo IM, Carinhanha C. Santos J, Pessoa CDÓ, da Silva-Júnior EF, de Araújo-Júnior JX, M. de Aquino T. Synthesis of hybrids thiazole–quinoline, thiazole–indole and their analogs: in vitro anti-proliferative effects on cancer cell lines, DNA binding properties and molecular modeling. NEW J CHEM 2021. [DOI: 10.1039/d1nj02105b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A quinoline–thiazole hybrid was synthesized, which showed cytotoxicity against the HL-60 cell line. Electrochemical and spectroscopic experiments suggested DNA as the biological target.
Collapse
|
12
|
Tang SQ, Leloire M, Schneider S, Mohr J, Bricard J, Gizzi P, Garnier D, Schmitt M, Bihel F. Diastereoselective Synthesis of Nonplanar 3-Amino-1,2,4-oxadiazine Scaffold: Structure Revision of Alchornedine. J Org Chem 2020; 85:15347-15359. [PMID: 33197185 DOI: 10.1021/acs.joc.0c01764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the diastereoselective synthesis of a 3-amino-1,2,4-oxadiazine (AOXD) scaffold. The presence of a N-O bond in the ring prevents the planar geometry of the aromatic system and induces a strong decrease in the basicity of the guanidine moiety. While DIBAL-H appeared to be the most efficient reducing agent because it exhibited high diastereoselectivity, we observed various behaviors of the Mitsunobu reaction on the resulting β-aminoalcohol, leading to either inversion or retention of the configuration depending on the steric hindrance in the vicinity of the hydroxy group. The physicochemical properties (pKa and log D) and hepatic stability of several AOXD derivatives were experimentally determined and found that the AOXD scaffold possesses promising properties for drug development. Moreover, we synthesized alchornedine, the only natural product with the AOXD scaffold. Based on a comparison of the analytical data, we found that the reported structure of alchornedine was incorrect and hypothesized a new one.
Collapse
Affiliation(s)
- Shuang-Qi Tang
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Maeva Leloire
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Séverine Schneider
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Julie Mohr
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Jacques Bricard
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Patrick Gizzi
- CBIS, UMS3286, CNRS, Université de Strasbourg, ESBS, Pôle API, 300 Bd Sébastien Brant, 67400 Illkirch-Graffenstaden, France
| | - Delphine Garnier
- Plateforme d'Analyse Chimique de Strasbourg-Illkirch, Faculty of Pharmacy, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Martine Schmitt
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Labex Médalis, UMR7200, CNRS, Université de Strasbourg, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
13
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
14
|
Nguyen T, Marusich J, Li JX, Zhang Y. Neuropeptide FF and Its Receptors: Therapeutic Applications and Ligand Development. J Med Chem 2020; 63:12387-12402. [PMID: 32673481 DOI: 10.1021/acs.jmedchem.0c00643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endogenous neuropeptide FF (NPFF) and its two cognate G protein-coupled receptors, Neuropeptide FF Receptors 1 and 2 (NPFFR1 and NPFFR2), represent a relatively new target system for many therapeutic applications including pain regulation, modulation of opioid side effects, drug reward, anxiety, cardiovascular conditions, and other peripheral effects. Since the cloning of NPFFR1 and NPFFR2 in 2000, significant progress has been made to understand their pharmacological roles and interactions with other receptor systems, notably the opioid receptors. A variety of NPFFR ligands with different mechanisms of action (agonists or antagonists) have been discovered although with limited subtype selectivities. Differential pharmacological effects have been observed for many of these NPFFR ligands, depending on assays/models employed and routes of administration. In this Perspective, we highlight the therapeutic potentials, current knowledge gaps, and latest updates of the development of peptidic and small molecule NPFFR ligands as tool compounds and therapeutic candidates.
Collapse
Affiliation(s)
- Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Julie Marusich
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
15
|
Synthesis of isothiosemicarbazones of potential antitumoral activity through a multicomponent reaction involving allylic bromides, carbonyl compounds and thiosemicarbazide. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Martínez-Navarro M, Maldonado R, Baños JE. Why mu-opioid agonists have less analgesic efficacy in neuropathic pain? Eur J Pain 2018; 23:435-454. [PMID: 30318675 DOI: 10.1002/ejp.1328] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Injury to peripheral nerves often leads to abnormal pain states (hyperalgesia, allodynia and spontaneous pain), which can remain long after the injury heals. Although opioid agonists remain the gold standard for the treatment of moderate to severe pain, they show reduced efficacy against neuropathic pain. In addition to analgesia, opioid use is also associated with hyperalgesia and analgesia tolerance, whose underlying mechanisms share some commonalities with nerve injury-induced hypersensitivity. Here, we reviewed up-to-day research exploring the contribution of mu-opioid receptor (MOR) on the pathophysiology of neuropathic pain and on analgesic opioid actions under these conditions. We focused on the specific contributions of MOR populations at peripheral, spinal and supraspinal level. Moreover, evidences of neuroplastic changes that may underlie the low efficacy of MOR agonists under neuropathic pain conditions are reviewed and discussed. Sensitization processes leading to pain hypersensitivity, molecular changes in signalling pathways triggered by MOR and glial activation are some of these mechanisms elicited by both nerve injury and opioid exposure. Nerve injury-induced pain hypersensitivity might be masking the initial analgesic effects of opioid agonists, and alternatively, sustained opioid treatment to individuals already suffering from neuropathic pain could aggravate their pathophysiological state. Finally, some combined therapies that can increase opioid analgesic effectiveness in neuropathic pain treatment are highlighted. SIGNIFICANCE: This review provides evidence of the low benefit of opioid monotherapy in neuropathic pain and analyses the reasons of this reduced effectiveness. Opioid agonists along with drugs targeted to block the sensitization processes induced by MOR stimulation might result in a better management of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Martínez-Navarro
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep-E Baños
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|