1
|
Nguyen T, Gamage TF, Finlay DB, Decker AM, Langston TL, Barrus D, Glass M, Li JX, Kenakin TP, Zhang Y. Development of 3-(4-Chlorophenyl)-1-(phenethyl)urea Analogues as Allosteric Modulators of the Cannabinoid Type-1 Receptor: RTICBM-189 is Brain Penetrant and Attenuates Reinstatement of Cocaine-Seeking Behavior. J Med Chem 2021; 65:257-270. [PMID: 34929081 DOI: 10.1021/acs.jmedchem.1c01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have shown that CB1 receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB1 NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB1 calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB1 potency, whereas 4-position analogues were generally less potent. The 3-chloro analogue (31, RTICBM-189) showed no activity at >50 protein targets and excellent brain permeation but relatively low metabolic stability in rat liver microsomes. Pharmacokinetic studies in rats confirmed the excellent brain exposure of 31 with a brain/plasma ratio Kp of 2.0. Importantly, intraperitoneal administration of 31 significantly and selectively attenuated the reinstatement of the cocaine-seeking behavior in rats without affecting locomotion.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Thomas F Gamage
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Daniel Barrus
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Terry P Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
2
|
Nguyen T, Gamage TF, Decker AM, Finlay DB, Langston TL, Barrus D, Glass M, Harris DL, Zhang Y. Rational design of cannabinoid type-1 receptor allosteric modulators: Org27569 and PSNCBAM-1 hybrids. Bioorg Med Chem 2021; 41:116215. [PMID: 34015703 DOI: 10.1016/j.bmc.2021.116215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Allosteric modulation offers an alternate approach to target the cannabinoid type-1 receptor (CB1) for therapeutic benefits. Examination of the two widely studied prototypic CB1 negative allosteric modulators (NAMs) Org27569 and PSNCBAM-1 revealed structural resemblance and similar structure-activity relationships (SARs). In silico docking and dynamics simulation studies using the crystal structure of CB1 co-bound with CP55,940 and Org27569 suggested that Org27569 and PSNCBAM-1 occupied the same binding pocket and several common interactions were present in both series with the CB1 receptor. A new scaffold was therefore designed by merging the key structural features from the two series and the hybrids retained these binding features in the in silico docking studies. In addition, one such hybrid displayed similar functions to Org27569 in dynamic simulations by preserving a key R2143.50-D3386.30 salt bridge and maintaining an antagonist-like Helix3-Helix6 interhelical distance. Based on these results, a series of hybrids were synthesized and assessed in calcium mobilization, [35S]GTPγS binding and cAMP assays. Several compounds displayed comparable potencies to Org27569 and PSNCBAM-1 in these assays. This work offers new insight of the SAR requirement at the allosteric site of the CB1 receptor and provides a new scaffold that can be optimized for the development of future CB1 allosteric modulators.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Thomas F Gamage
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | | | - Daniel Barrus
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Danni L Harris
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Mielnik CA, Lam VM, Ross RA. CB 1 allosteric modulators and their therapeutic potential in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110163. [PMID: 33152384 DOI: 10.1016/j.pnpbp.2020.110163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Vincent M Lam
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Saldaña-Shumaker SL, Grenning AJ, Cunningham CW. Modern approaches to the development of synthetic cannabinoid receptor probes. Pharmacol Biochem Behav 2021; 203:173119. [PMID: 33508249 DOI: 10.1016/j.pbb.2021.173119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The endocannabinoid system, which spans the central and peripheral nervous systems and regulates many biologic processes, is an important target for probe discovery and medications development. Whereas the earliest endocannabinoid receptor probes were derivatives of the non-selective phytocannabinoids isolated from Cannabis species, modern drug discovery techniques have expanded the definitions of what constitutes a CB1R or CB2R cannabinoid receptor ligand. This review highlights recent advances in synthetic cannabinoid receptor chemistry and pharmacology. We provide examples of new CB1R- and CB2R-selective probes, and discuss rational approaches to the design of peripherally-restricted agents. We also describe structural classes of positive- and negative allosteric modulators (PAMs and NAMs) of CB1R and CB2R. Finally, we introduce new opportunities for cannabinoid receptor probe development that have emerged in recent years, including biased agonists that may lead to medications lacking adverse effects.
Collapse
Affiliation(s)
- Savanah L Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| |
Collapse
|
5
|
Nguyen T, Thomas BF, Zhang Y. Overcoming the Psychiatric Side Effects of the Cannabinoid CB1 Receptor Antagonists: Current Approaches for Therapeutics Development. Curr Top Med Chem 2019; 19:1418-1435. [PMID: 31284863 DOI: 10.2174/1568026619666190708164841] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
The Cannabinoid CB1 Receptor (CB1R) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the CB1R in the last two decades.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Brian F Thomas
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| |
Collapse
|
6
|
Nguyen T, Gamage TF, Decker AM, Barrus D, Langston TL, Li JX, Thomas BF, Zhang Y. Synthesis and Pharmacological Evaluation of 1-Phenyl-3-Thiophenylurea Derivatives as Cannabinoid Type-1 Receptor Allosteric Modulators. J Med Chem 2019; 62:9806-9823. [PMID: 31596583 DOI: 10.1021/acs.jmedchem.9b01161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported diarylurea derivatives as cannabinoid type-1 receptor (CB1) allosteric modulators, which were effective in attenuating cocaine-seeking behavior. Herein, we extended the structure-activity relationships of PSNCBAM-1 (2) at the central phenyl ring directly connected to the urea moiety. Replacement with a thiophene ring led to 11 with improved or comparable potencies in calcium mobilization, [35S]GTPγS binding, and cAMP assays, whereas substitution with nonaromatic rings led to significant attenuation of the modulatory activity. These compounds had no inverse agonism in [35S]GTPγS binding, a characteristic that is often thought to contribute to adverse psychiatric effects. While 11 had good metabolic stability in rat liver microsomes, it showed modest solubility and blood-brain barrier permeability. Compound 11 showed an insignificant attenuation of cocaine seeking behavior in rats, most likely due to its limited CNS penetration, suggesting that pharmacokinetics and distribution play a role in translating the in vitro efficacy to in vivo behavior.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Thomas F Gamage
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Ann M Decker
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Daniel Barrus
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Tiffany L Langston
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology , University of Buffalo, the State University of New York , Buffalo , New York 14214 , United States
| | - Brian F Thomas
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Yanan Zhang
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|