1
|
Shokhen M, Albeck A, Borisov V, Israel Y, Levy NS, Levy AP. Conformational analysis of the IQSEC2 protein by statistical thermodynamics. Curr Res Struct Biol 2024; 8:100158. [PMID: 39431217 PMCID: PMC11490877 DOI: 10.1016/j.crstbi.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Mutations in the IQSEC2 gene result in severe intellectual disability, epilepsy and autism. The primary function of IQSEC2 is to serve as a guanine exchange factor (GEF) controlling the activation of ARF6 which in turn mediates membrane trafficking and synaptic connections between neurons. As IQSEC2 is a large intrinsically disordered protein little is known of the structure of the protein and how this influences its function. Understanding this structure and function relationship is critical for the development of novel therapies to treat IQSEC2 disease. We therefore sought to identify IQSEC2 conformers in unfolded and folded states and analyze how conformers differ when binding to ARF6 and thereby influence GEF catalysis. We simulated the folding process of IQSEC2 by accelerated molecular dynamics (aMD). Following the ensemble method of Gibbs, we proposed that the number of microstates in the ensemble replicating a protein macroscopic system is the total number of MD snapshots sampled on the production MD trajectory. We divided the entire range of reaction coordinate into a series of consecutive, non-overlapping bins. Thermal fluctuations of biomolecules in local equilibrium states are Gaussian in form. To predict the free energy and entropy of different conformational states using statistical thermodynamics, the density of states was estimated taking into account how many MD snapshots constitute each conformational state. IQSEC2 dimers derived from the most stable folded and unfolded conformers of IQSEC2 were generated by protein-protein docking and then used to construct IQSEC2-ARF6 encounter complexes. We suggest that IQSEC2 folding and dimerization are two competing processes that may be used by nature to regulate the process of GDP exchange on ARF6 catalyzed by IQSEC2.
Collapse
Affiliation(s)
- Michael Shokhen
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Veronika Borisov
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yonat Israel
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nina S. Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Andrew P. Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Soto P, Gloeb GM, Tsuchida KA, Charles AA, Greenwood NM, Hendrickson H. Insight into the conserved structural dynamics of the C-terminus of mammal PrPC identifies structural core and possible structural role of pharmacological chaperones. Prion 2023; 17:55-66. [PMID: 36892160 PMCID: PMC10012922 DOI: 10.1080/19336896.2023.2186674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Misfolding of the prion protein is central to prion disease aetiology. Although understanding the dynamics of the native fold helps to decipher the conformational conversion mechanism, a complete depiction of distal but coupled prion protein sites common across species is lacking. To fill this gap, we used normal mode analysis and network analysis to examine a collection of prion protein structures deposited on the protein data bank. Our study identified a core of conserved residues that sustains the connectivity across the C-terminus of the prion protein. We propose how a well-characterized pharmacological chaperone may stabilize the fold. Also, we provide insight into the effect on the native fold of initial misfolding pathways identified by others using kinetics studies.
Collapse
Affiliation(s)
- Patricia Soto
- Physics department, Creighton University, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
3
|
Ermakova E, Makshakova O, Zuev Y, Sedov I. Beta-rich intermediates in denaturation of lysozyme: accelerated molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:13953-13964. [PMID: 34751100 DOI: 10.1080/07391102.2021.1997823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyloid fibrillar aggregates play a critical role in many neurodegenerative disorders. Conversion of globular proteins into fibrils is associated with global conformational rearrangement and involves the transformation of α-helices to β-sheets. In the present work, the accelerated molecular dynamics technique was applied to study the unfolding of hen egg-white lysozyme at elevated temperatures, and the transformation of the native structure to a disordered one was analyzed. The influence of the disulfide bonds on the conformational dynamics and the energy landscape of denaturation process was considered. Our results show that formation of the metastable β-enriched conformers of individual protein molecules may precede the aggregation process. These β-rich intermediates can play a role of bricks making up fibrils.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elena Ermakova
- FRC Kazan Scientific Center of RAS, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia.,Sirius University of Science and Technology, Sochi, Russia
| | - Olga Makshakova
- FRC Kazan Scientific Center of RAS, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia.,Sirius University of Science and Technology, Sochi, Russia
| | - Yuriy Zuev
- FRC Kazan Scientific Center of RAS, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
| | - Igor Sedov
- Sirius University of Science and Technology, Sochi, Russia.,Kazan Federal University, Kazan, Russia
| |
Collapse
|
4
|
Ilie IM, Caflisch A. Antibody binding increases the flexibility of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140827. [PMID: 35931365 DOI: 10.1016/j.bbapap.2022.140827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrP) into a pathogenic conformer (PrPSc). A proposed therapeutic approach to avoid the pathogenic transformation is to develop antibodies that bind to PrP and stabilize its structure. POM1 and POM6 are two monoclonal antibodies that bind the globular domain of PrP and have different biological responses, i.e., trigger neurotoxicity mimicking prion infections (POM1) or prevent neurotoxicity (POM6). The crystal structures of PrP in complex with the two antibodies show similar epitopes which seems inconsistent with the opposite phenotypes. Here, we investigate the influence of the POM1 and POM6 antibodies on the flexibility of the mouse PrP by molecular dynamics simulations. The simulations reveal that the POM6/PrP interface is less stable than the POM1/PrP interface, ascribable to localized polar mismatches at the interface, despite the former complex having a larger epitope than the latter. In the presence of any of the two antibodies, the flexibility of the globular domain increases everywhere except for the β1-α1 loop in the POM1/PrP complex which suggests the involvement of this loop in the pathological conversion. The secondary structure of PrP is preserved whereas the polar interactions involving residues Glu146, Arg156 and Arg208 are modified upon antibody binding.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
5
|
Pauly T, Bolakhrif N, Kaiser J, Nagel-Steger L, Gremer L, Gohlke H, Willbold D. Met/Val129 polymorphism of the full-length human prion protein dictates distinct pathways of amyloid formation. J Biol Chem 2022; 298:102430. [PMID: 36037966 PMCID: PMC9513279 DOI: 10.1016/j.jbc.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt–Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23–230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.
Collapse
Affiliation(s)
- Thomas Pauly
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Najoua Bolakhrif
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Luitgard Nagel-Steger
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; John von Neumann Institute for Computing (NIC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Ilie IM, Bacci M, Vitalis A, Caflisch A. Antibody binding modulates the dynamics of the membrane-bound prion protein. Biophys J 2022; 121:2813-2825. [PMID: 35672948 PMCID: PMC9382331 DOI: 10.1016/j.bpj.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with lethal neurodegeneration. PrPC consists of a flexible tail (residues 23-123) and a globular domain (residues 124-231) whose C-terminal end is anchored to the cell membrane. The neurotoxic antibody POM1 and the innocuous antibody POM6 recognize the globular domain. Experimental evidence indicates that POM1 binding to PrPC emulates the influence on PrPC of the misfolded prion protein (PrPSc) while the binding of POM6 has the opposite biological response. Little is known about the potential interactions between flexible tail, globular domain, and the membrane. Here, we used atomistic simulations to investigate how these interactions are modulated by the binding of the Fab fragments of POM1 and POM6 to PrPC and by interstitial sequence truncations to the flexible tail. The simulations show that the binding of the antibodies restricts the range of orientations of the globular domain with respect to the membrane and decreases the distance between tail and membrane. Five of the six sequence truncations influence only marginally this distance and the contact patterns between tail and globular domain. The only exception is a truncation coupled to a charge inversion mutation of four N-terminal residues, which increases the distance of the flexible tail from the membrane. The interactions of the flexible tail and globular domain are modulated differently by the two antibodies.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Marco Bacci
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Li X, Ye M, Wang Y, Qiu M, Fu T, Zhang J, Zhou B, Lu S. How Parkinson's disease-related mutations disrupt the dimerization of WD40 domain in LRRK2: a comparative molecular dynamics simulation study. Phys Chem Chem Phys 2021; 22:20421-20433. [PMID: 32914822 DOI: 10.1039/d0cp03171b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multidomain kinase enzyme leucine-rich-repeat kinase 2 (LRRK2), activated through a homodimerization manner, has been identified as an important pathogenic factor in Parkinson's disease (PD), the second most common neurodegenerative disease wordwide. The Trp-Asp-40 (WD40) domain, located in the C-terminal LRRK2, harbours one of the most frequent PD-related variants, G2385R. However, the detailed dynamics of WD40 during LRRK2 dimerization and the underlying mechanism through which the pathogenic mutations disrupt the formation of the WD40 dimer have remained elusive. Here, microsecond-scale molecular dynamics simulations were employed to provide a mechanistic view underlying the WD40 dimerization and unveil the structural basis by which the interface-based mutations G2385R, H2391D and R2394E compromise the corresponding process. The simulation results identified important residues, D2351, R2394, E2395, R2413, and R2443, involved in establishing the complex binding network along the dimerization interface, which was significantly weakened in the presence of interfacial mutations. A "sag-bulge" model was proposed to explain the unfavorable dimer formation in the mutant systems. In addition, mutations altered the community configuration in the wild-type system in which inter-monomeric interplay is prominent, leading to the destabilization of the WD40 dimer under mutation.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Mingyu Ye
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Yue Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Ming Qiu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Tingting Fu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Bin Zhou
- Department of Emergency, Changhai Hospital, Affiliated to Navy Military Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Zinc-mediated conformational preselection mechanism in the allosteric control of DNA binding to the zinc transcriptional regulator (ZitR). Sci Rep 2020; 10:13276. [PMID: 32764589 PMCID: PMC7413533 DOI: 10.1038/s41598-020-70381-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The zinc transcriptional regulator (ZitR) functions as a metalloregulator that fine tunes transcriptional regulation through zinc-dependent DNA binding. However, the molecular mechanism of zinc-driven allosteric control of the DNA binding to ZitR remains elusive. Here, we performed enhanced sampling accelerated molecular dynamics simulations to figure out the mechanism, revealing the role of protein dynamics in the zinc-induced allosteric control of DNA binding to ZitR. The results suggest that zinc-free ZitR samples distinct conformational states, only a handful of which are compatible with DNA binding. Remarkably, zinc binding reduces the conformational plasticity of the DNA-binding domain of ZitR, promoting the population shift in the ZitR conformational ensemble towards the DNA binding-competent conformation. Further co-binding of DNA to the zinc–ZitR complex stabilizes this competent conformation. These findings suggest that ZitR–DNA interactions are allosterically regulated in a zinc-mediated conformational preselection manner, highlighting the importance of conformational dynamics in the regulation of transcription factor family.
Collapse
|
9
|
Xu Z, Liu H, Wang S, Zhang Q, Yao X, Zhou S, Liu H. Unraveling the Molecular Mechanism of Prion H2 C-Terminus Misfolding by Metadynamics Simulations. ACS Chem Neurosci 2020; 11:772-782. [PMID: 32023408 DOI: 10.1021/acschemneuro.9b00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational transition from the normal cellular form of prion protein (PrPC) to the pathogenic "scrapie" form (PrPSc) is considered to be a key event in the occurrence of prion disease. Additionally, the H2 C-terminus is widely considered to be a vital site for PrP conformational transition, which can be used as an important region to explore the potential mechanism of PrP misfolding. Therefore, to study the misfolding mechanism of PrP, 500 ns well-tempered metadynamics simulations were performed by focusing on the H2 C-terminus of PrP. For comparison, three systems were designed in total, including PrP in neutral and acidic conditions, as well as H187R mutant. The resulting free energy surfaces (FESs) obtained from metadynamics simulations reveal that acidic conditions and H187R mutation can facilitate PrP misfolding by decreasing free energy barriers for conformational transition and forming energy stable conformational states. Further analyses aimed at H2 C-terminus show that due to the increase of positive charge on residue 187 in both acidic and H187R systems, the electrostatic repulsion of residue 187 and R136/R156 increases greatly, which disrupts the electrostatic interaction network around H2 C-terminus and exposes the hydrophobic core to the solvent. Taken together, acidic conditions and H187R mutation can accelerate PrP misfolding mainly by forming more energetically stable metastable conformations with lower free energy barriers, and electrostatic network disruption involving residue 187 drives the initial misfolding of H2 C-terminus. This study provides quantitative insight into the related function of the H2 C-terminus in the PrP misfolding process, which may guide H2 C-terminus mediated drug design in the future.
Collapse
Affiliation(s)
- Zerong Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Liu H, Zhong H, Xu Z, Zhang Q, Shah SJA, Liu H, Yao X. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Phys Chem Chem Phys 2020; 22:10968-10980. [DOI: 10.1039/c9cp06954b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
All-atom molecular dynamics (MD) simulation combined with Markov state model (MSM) were used to uncover the structural characteristics and misfolding mechanism of the key R3 fragment of tau protein at the atomic level.
Collapse
Affiliation(s)
- Hongli Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Zerong Xu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | | | | | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Quality Research in Chinese Medicine
| |
Collapse
|
11
|
Lee J, Chang I, Yu W. Atomic insights into the effects of pathological mutants through the disruption of hydrophobic core in the prion protein. Sci Rep 2019; 9:19144. [PMID: 31844149 PMCID: PMC6915724 DOI: 10.1038/s41598-019-55661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Destabilization of prion protein induces a conformational change from normal prion protein (PrPC) to abnormal prion protein (PrPSC). Hydrophobic interaction is the main driving force for protein folding, and critically affects the stability and solvability. To examine the importance of the hydrophobic core in the PrP, we chose six amino acids (V176, V180, T183, V210, I215, and Y218) that make up the hydrophobic core at the middle of the H2-H3 bundle. A few pathological mutants of these amino acids have been reported, such as V176G, V180I, T183A, V210I, I215V, and Y218N. We focused on how these pathologic mutations affect the hydrophobic core and thermostability of PrP. For this, we ran a temperature-based replica-exchange molecular dynamics (T-REMD) simulation, with a cumulative simulation time of 28 μs, for extensive ensemble sampling. From the T-REMD ensemble, we calculated the protein folding free energy difference between wild-type and mutant PrP using the thermodynamic integration (TI) method. Our results showed that pathological mutants V176G, T183A, I215V, and Y218N decrease the PrP stability. At the atomic level, we examined the change in pair-wise hydrophobic interactions from valine-valine to valine-isoleucine (and vice versa), which is induced by mutation V180I, V210I (I215V) at the 180th-210th (176th-215th) pair. Finally, we investigated the importance of the π-stacking between Y218 and F175.
Collapse
Affiliation(s)
- Juhwan Lee
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea.
- Department of Emerging Material Sciences, DGIST, Daegu, 42988, Korea.
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
| | - Iksoo Chang
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
12
|
Zhang Q, An X, Liu H, Wang S, Xiao T, Liu H. Uncovering the Resistance Mechanism of Mycobacterium tuberculosis to Rifampicin Due to RNA Polymerase H451D/Y/R Mutations From Computational Perspective. Front Chem 2019; 7:819. [PMID: 31850310 PMCID: PMC6902089 DOI: 10.3389/fchem.2019.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is still one of the top 10 causes of deaths worldwide, especially with the emergence of multidrug-resistant tuberculosis. Rifampicin, as the most effective first-line antituberculosis drug, also develops resistance due to the mutation on Mycobacterium tuberculosis (Mtb) RNA polymerase. Among these mutations, three mutations at position 451 (H451D, H451Y, H451R) are associated with high-level resistance to rifampicin. However, the resistance mechanism of Mtb to rifampicin is still unclear. In this work, to explore the resistance mechanism of Mtb to rifampicin due to H451D/Y/R mutations, we combined the molecular dynamics simulation, molecular mechanics generalized-Born surface area calculation, dynamic network analysis, and residue interactions network analysis to compare the interaction change of rifampicin with wild-type RNA polymerase and three mutants. The results of molecular mechanics generalized-Born surface area calculations indicate that the binding free energy of rifampicin with three mutants decreases. In addition, the dynamic network analysis and residue interaction network analysis show that when H451 was mutated, the interactions of residue 451 with its adjacent residues such as Q438, F439, M440, D441, and S447 disappeared or weakened, increasing the flexibility of binding pocket. At the same time, the disappearance of hydrogen bonds between R613 and rifampicin caused by the flipping of R613 is another important reason for the reduction of binding ability of rifampicin in H451D/Y mutants. In H451R mutant, the mutation causes the binding pocket change too much so that the position of rifampicin has a large movement in the binding pocket. In this study, the resistance mechanism of rifampicin at the atomic level is proposed. The proposed drug-resistance mechanism will provide the valuable guidance for the design of antituberculosis drugs.
Collapse
Affiliation(s)
| | - Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tong Xiao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|