1
|
Macedo BL, Veloso MF, Dias IB, Ayub JGM, Beijamini V. Sex differences in the anticompulsive-like effect of memantine: Involvement of nitric oxide pathway but not AMPA receptors. Behav Brain Res 2024; 461:114834. [PMID: 38142859 DOI: 10.1016/j.bbr.2023.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Memantine, an N-Methyl-D-Aspartate (NMDA) antagonist, has been examined as a potential treatment for Obsessive-Compulsive Disorder (OCD). Yet, there is limited knowledge regarding how it works to reduce compulsive behaviour and whether it has different effects on individuals based on their sex. Herein, we investigated if there are sex differences in the anticompulsive-like effect of memantine in adult Swiss mice. Additionally, we explored whether the nitric oxide (NO) pathway and α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptors play a role in memantine's effects. To start, we assessed the impact of a single intraperitoneal dose of memantine (at 3, 5, and 10 mg/kg) on behaviours exhibited in the open field test (OFT) and the marble-burying test (MBT), the latter being a predictive test for anticompulsive effects. All doses of memantine reduced marble-burying behaviour in both male and female mice without affecting their locomotor activity in the OFT. This anticompulsive-like effect was also confirmed in another predictive test, the nest-building test, with the highest memantine dose (10 mg/kg) reducing nest-building behaviour without significant differences between male and female mice. We observed that pre-treatment with L-arginine, a NO precursor, mitigated the anticompulsive-like effect of memantine in male mice but had no effect in female mice in the MBT. Finally, NBQX, an AMPA receptor antagonist, did not block the anticompulsive-like effect of memantine. In summary, our study suggests that the anticompulsive-like effect of memantine does not appear to be sex-specific, does not depend on AMPA receptors, and involves the NO pathway primarily in male mice.
Collapse
Affiliation(s)
- Breno Lopes Macedo
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Mariana Friedrich Veloso
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Isabella Braun Dias
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Júlia Grigorini Mori Ayub
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vanessa Beijamini
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Giri A, Mehan S, Khan Z, Gupta GD, Narula AS. Melatonin-mediated IGF-1/GLP-1 activation in experimental OCD rats: Evidence from CSF, blood plasma, brain and in-silico investigations. Biochem Pharmacol 2023; 217:115831. [PMID: 37777162 DOI: 10.1016/j.bcp.2023.115831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive, repetitive thoughts and behaviors. Our study uses a validated 8-OH-DPAT-induced experimental model of OCD in rodents. We focus on the modulatory effects of Insulin-like growth factor-1 (IGF-1) and glucagon-like peptide-1 (GLP-1), which are linked to neurodevelopment and survival. Current research investigates melatonin, a molecule with neuroprotective properties and multiple functions. Melatonin has beneficial effects on various illnesses, including Alzheimer's, Parkinson's, and depression, indicating its potential efficacy in treating OCD. In the present study, we employed two doses of melatonin, 5 mg/kg and 10 mg/kg, demonstrating a dose-dependent effect on 8-OH-DPAT-induced rat changes. In addition, the melatonin antagonist luzindole 5 mg/kg was utilized to compare and validate the efficacy of melatonin. In-silico studies alsocontribute to understanding the activation of IGF-1/GLP-1 pathways by melatonin. Current research indicates restoring neurochemical measurements on various biological samples (brain homogenates, CSF, and blood plasma) and morphological and histological analyses. In addition, the current research seeks to increase understanding of OCD and investigate potential new treatment strategies. Therefore, it is evident from the aforementioned research that the protective effect of melatonin can serve as a strong basis for developing a new OCD treatment by upregulating IGF-1 and GLP-1 levels. The primary focus of current study revolves around the examination of melatonin as an activator of IGF-1/GLP-1, with the aim of potentially mitigating behavioral, neurochemical, and histopathological abnormalities in an experimental model of obsessive-compulsive disorder caused by 8-OH-DPAT in adult Wistar rats.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
3
|
Sethi P, Mehan S, Khan Z, Chhabra S. Acetyl-11-keto-beta boswellic acid(AKBA) modulates CSTC-pathway by activating SIRT-1/Nrf2-HO-1 signalling in experimental rat model of obsessive-compulsive disorder: Evidenced by CSF, blood plasma and histopathological alterations. Neurotoxicology 2023; 98:61-85. [PMID: 37549874 DOI: 10.1016/j.neuro.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Obsessive-Compulsive disorder (OCD) is a long-term and persistent mental illness characterised by obsessive thoughts and compulsive behaviours. Numerous factors can contribute to the development or progression of OCD. These factors may result from the dysregulation of multiple intrinsic cellular pathways, including SIRT-1, Nrf2, and HO-1. Inhibitors of selective serotonin reuptake (SSRIs) are effective first-line treatments for OCD. In our ongoing research, we have investigated the role of SIRT-1, Nrf2, and HO-1, as well as the neuroprotective potential of Acetyl-11-keto-beta boswellic acid (AKBA) against behavioural and neurochemical changes in rodents treated with 8-OH-DPAT. In addition, the effects of AKBA were compared to those of fluvoxamine (FLX), a standard OCD medication. Injections of 8-OH-DPAT into the intra-dorso raphe nuclei (IDRN) of rats for seven days induced repetitive and compulsive behaviour accompanied by elevated oxidative stress, inflammatory processes, apoptosis, and neurotransmitter imbalances in CSF, blood plasma, and brain samples. Chronic administration of AKBA at 50 mg/kg and 100 mg/kg p.o. restored histopathological alterations in the cortico-striatal-thalamo-cortical (CSTC) pathway, including the cerebral cortex, striatum, and hippocampal regions. Our investigation revealed that when AKBA and fluvoxamine were administered together, the alterations were restored to a greater degree than when administered separately. These findings demonstrate that the neuroprotective effect of AKBA can serve as an effective basis for developing a novel OCD treatment.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Swesha Chhabra
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Kudryashov NV, Volkova AV, Shimshirt AA, Naplekova PL, Voronina TA, Seredenin SB. Specifics of Experimental Modeling 8-OH-DPAT-Induced Perseverative Behavior in Mice. Bull Exp Biol Med 2023:10.1007/s10517-023-05807-0. [PMID: 37338756 DOI: 10.1007/s10517-023-05807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/21/2023]
Abstract
The effect of 5-HT1A receptor agonist 8-OH-DPAT (intraperitoneal injection in doses of 1, 2, and 4 mg/kg) on spontaneous alternation behavior of mice in Y-maze was studied without and with habituation procedure and food reward. In the first case, 8-OH-DPAT administration led to a decrease in spontaneous alternation and locomotor activity in mice. At the same time, 8-OH-DPAT treatment after habituation and food deprivation increased repeated choices of goal arms without affecting locomotor activity, which was consistent with perseverative behavior. 8-OH-DPAT-induced decrease in spontaneous alternation behavior in Y-maze in mice with habituation and food reward is the most suitable procedure for experimental modeling of the perseverative behavior and studying the anticompulsive activity of new substances.
Collapse
Affiliation(s)
- N V Kudryashov
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | - A V Volkova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - A A Shimshirt
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - P L Naplekova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Voronina
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S B Seredenin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
5
|
Odland AU, Sandahl R, Andreasen JT. Chronic corticosterone improves perseverative behavior in mice during sequential reversal learning. Behav Brain Res 2023; 450:114479. [PMID: 37169127 DOI: 10.1016/j.bbr.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Stressful life events can both trigger development of psychiatric disorders and promote positive behavioral changes in response to adversities. The relationship between stress and cognitive flexibility is complex, and conflicting effects of stress manifest in both humans and laboratory animals. OBJECTIVE To mirror the clinical situation where stressful life events impair mental health or promote behavioral change, we examined the post-exposure effects of stress on cognitive flexibility in mice. METHODS We tested female C57BL/6JOlaHsd mice in the touchscreen-based sequential reversal learning test. Corticosterone (CORT) was used as a model of stress and was administered in the drinking water for two weeks before reversal learning. Control animals received drinking water without CORT. Behaviors in supplementary tests were included to exclude non-specific confounding effects of CORT and improve interpretation of the results. RESULTS CORT-treated mice were similar to controls on all touchscreen parameters before reversal. During the low accuracy phase of reversal learning, CORT reduced perseveration index, a measure of perseverative responding, but did not affect acquisition of the new reward contingency. This effect was not related to non-specific deficits in chamber activity. CORT increased anxiety-like behavior in the elevated zero maze test and repetitive digging in the marble burying test, reduced locomotor activity, but did not affect spontaneous alternation behavior. CONCLUSION CORT improved cognitive flexibility in the reversal learning test by extinguishing prepotent responses that were no longer rewarded, an effect possibly related to a stress-mediated increase in sensitivity to negative feedback that should be confirmed in a larger study.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Raony Í, Domith I, Lourenco MV, Paes-de-Carvalho R, Pandolfo P. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110555. [PMID: 35346791 DOI: 10.1016/j.pnpbp.2022.110555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil.
| |
Collapse
|
7
|
Quintero-Villegas A, Valdés-Ferrer SI. Central nervous system effects of 5-HT 7 receptors: a potential target for neurodegenerative diseases. Mol Med 2022; 28:70. [PMID: 35725396 PMCID: PMC9208181 DOI: 10.1186/s10020-022-00497-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
5-HT7 receptors (5-HT7R) are the most recently identified among the family of serotonin receptors. Their role in health and disease, particularly as mediators of, and druggable targets for, neurodegenerative diseases, is incompletely understood. Unlike other serotonin receptors, for which abundant preclinical and clinical data evaluating their effect on neurodegenerative conditions exist, the available information on the role of the 5-HT7R receptor is limited. In this review, we describe the signaling pathways and cellular mechanisms implicated in the activation of the 5-HT7R; also, we analyze different mechanisms of neurodegeneration and the potential therapeutic implications of pharmacological interventions for 5-HT7R signaling.
Collapse
Affiliation(s)
- Alejandro Quintero-Villegas
- Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Iván Valdés-Ferrer
- Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico. .,Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico. .,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
8
|
Acute serotonin 1B/1A receptor activation impairs behavioral flexibility in C57BL/6J mice. Behav Brain Res 2022; 427:113865. [PMID: 35367298 DOI: 10.1016/j.bbr.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Pharmacological activation of the serotonin (5-HT) 1B and 5-HT1A receptors has been shown to induce OCD-like perseverative circling and locomotor stereotypy in rodents. Although, several studies have examined how activation of these receptors facilitates these motor-associated OCD-like behaviors, it is not known how acute 5-HT1B and 5-HT1A activation impacts behavioral inflexibility, a common trait related to OCD. The current study examined how acute 5-HT1B/1A receptor agonist RU24969 treatment at 0.01, 0.1, and 1.0 mg/kg impacted behavioral flexibility in both female and male C57BL/6J mice. Behavioral flexibility was tested using a spatial reversal learning task, with probabilistic reward contingencies. In addition, locomotor activity and anxiety-like behaviors were also measured. RU24969 at 0.1 and 1.0 mg/kg impaired behavioral flexibility in both female and male C57BL/6J mice. RU24969 treatment at 1.0 mg/kg reduced locomotor activity in male mice, although RU24969 treatment did not significantly reduce locomotor activity in female mice. In the open field, 1.0 mg/kg elevated anxiety-like behavior in male mice only. Overall, these results demonstrate that acute 5-HT1B and 5-HT1A receptor activation leads to impairments in behavioral flexibility, a common trait associated with OCD.
Collapse
|
9
|
Memantine and Riluzole Exacerbate, Rather Than Ameliorate Behavioral Deficits Induced by 8-OH-DPAT Sensitization in a Spatial Task. Biomolecules 2021; 11:biom11071007. [PMID: 34356631 PMCID: PMC8301967 DOI: 10.3390/biom11071007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic sensitization to serotonin 1A and 7 receptors agonist 8-OH-DPAT induces compulsive checking and perseverative behavior. As such, it has been used to model obsessive-compulsive disorder (OCD)-like behavior in mice and rats. In this study, we tested spatial learning in the 8-OH-DPAT model of OCD and the effect of co-administration of memantine and riluzole—glutamate-modulating agents that have been shown to be effective in several clinical trials. Rats were tested in the active place avoidance task in the Carousel maze, where they learned to avoid the visually imperceptible shock sector. All rats were subcutaneously injected with 8-OH-DPAT (0.25 mg/kg) or saline (control group) during habituation. During acquisition, they were pretreated with riluzole (1 mg/kg), memantine (1 mg/kg), or saline solution 30 min before each session and injected with 8-OH-DPAT (“OH” groups) or saline (“saline” groups) right before the experiment. We found that repeated application of 8-OH-DPAT during both habituation and acquisition significantly increased locomotion, but it impaired the ability to avoid the shock sector. However, the application of 8-OH-DPAT in habituation had no impact on the learning process if discontinued in acquisition. Similarly, memantine and riluzole did not affect the measured parameters in the “saline” groups, but in the “OH” groups, they significantly increased locomotion. In addition, riluzole increased the number of entrances and decreased the maximum time avoided of the shock sector. We conclude that monotherapy with glutamate-modulating agents does not reduce but exacerbates cognitive symptoms in the animal model of OCD.
Collapse
|
10
|
Odland AU, Sandahl R, Andreasen JT. Sequential reversal learning: a new touchscreen schedule for assessing cognitive flexibility in mice. Psychopharmacology (Berl) 2021; 238:383-397. [PMID: 33123820 DOI: 10.1007/s00213-020-05687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023]
Abstract
RATIONALE The widespread deficits in cognitive flexibility observed across psychiatric disorders call for improved rodent tests to understand the biology of cognitive flexibility and development of better psychotherapeutics. Current reversal learning paradigms have a forced-choice setup that challenges the interpretation of results. OBJECTIVES We aimed at developing a free-choice reversal learning test, where images are presented sequentially and animals are free to move, to enable investigation of the cognitive sub-processes that occur during reversal. METHODS Behavior in female C57BL/6JOlaHsd mice was characterized using chronic fluoxetine as a reference compound. Additional tests were included to support the interpretation of results and exclude confounding pharmacological effects. Behaviors in vehicle-treated mice were furthermore analyzed for relatedness to deepen the understanding of parameters measured. RESULTS We found that exploitation of the previously rewarded image was independent of exploration and acquisition of the new reward contingency and could be differentially modulated by fluoxetine, supporting recent theories that these processes are not mutually exclusive. Specifically, fluoxetine reduced mistake rate, premature and perseverative responses, and promoted conservative strategies during reversal without affecting hit rate. These effects appeared to be most prominent during the late stage of reversal learning, where accuracy was above chance level. Analysis of behaviors in vehicle-treated mice suggested that exploitation was related to an impulsive-like deficit in response inhibition, while exploration was more related to motivation. CONCLUSIONS This new schedule was feasible, easy to implement, and can provide a deeper understanding of the cognitive sub-processes during reversal.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
11
|
Chaliha D, Mamo JC, Albrecht M, Lam V, Takechi R, Vaccarezza M. A Systematic Review of the MDMA Model to Address Social Impairment in Autism. Curr Neuropharmacol 2021; 19:1101-1154. [PMID: 33388021 PMCID: PMC8686313 DOI: 10.2174/1570159x19666210101130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. Unfortunately, no gold-standard treatments exist to alleviate the core socio-behavioural impairments of ASD. Meanwhile, the prosocial empathogen/entactogen 3,4-methylene-dioxy-methamphetamine (MDMA) is known to enhance sociability and empathy in both humans and animal models of psychological disorders. OBJECTIVE We review the evidence obtained from behavioural tests across the current literature, showing how MDMA can induce prosocial effects in animals and humans, where controlled experiments were able to be performed. METHODS Six electronic databases were consulted. The search strategy was tailored to each database. Only English-language papers were reviewed. Behaviours not screened in this review may have affected the core ASD behaviours studied. Molecular analogues of MDMA have not been investigated. RESULTS We find that the social impairments may potentially be alleviated by postnatal administration of MDMA producing prosocial behaviours in mostly the animal model. CONCLUSION MDMA and/or MDMA-like molecules appear to be an effective pharmacological treatment for the social impairments of autism, at least in animal models. Notably, clinical trials based on MDMA use are now in progress. Nevertheless, larger and more extended clinical studies are warranted to prove the assumption that MDMA and MDMA-like molecules have a role in the management of the social impairments of autism.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Vaccarezza
- Address correspondence to this author at the Curtin Medical School, Curtin Health Innovation Research Institute, P.O. Box 6845, WA 6102 Perth, Australia; Tel: 08 9266 7671; E-mail:
| |
Collapse
|
12
|
Odland AU, Jessen L, Kristensen JL, Fitzpatrick CM, Andreasen JT. The 5-hydroxytryptamine 2A receptor agonists DOI and 25CN-NBOH decrease marble burying and reverse 8-OH-DPAT-induced deficit in spontaneous alternation. Neuropharmacology 2019; 183:107838. [PMID: 31693871 DOI: 10.1016/j.neuropharm.2019.107838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023]
Abstract
5-Hydroxytryptamine 2A receptor (5-HT2AR) agonist psychedelics are increasingly recognized as potentially useful treatments of psychiatric disorders, such as obsessive-compulsive disorder, depression, anxiety, and drug dependence. There is limited understanding of the way they exert their therapeutic action, but inhibition of rigid behavior and cognition has been suggested as a key factor. To examine the role of 5-HT2ARs in modulating repetitive behavior, we tested two 5-HT2AR agonists, DOI, and the selective 25CN-NBOH, in two mouse tests of compulsive-like behavior. Using adult C57BL/6JOlaHsd male mice, we examined the effects of the two compounds on digging behavior in the marble burying test and on 8-OH-DPAT-disrupted spontaneous alternation behavior in the Y-maze. Both compounds dose-dependently decreased digging behavior in the marble burying test, indicating anti-compulsivity effects, which were not related to non-specific locomotor inhibition. Both 5-HT2AR agonists also reversed 8-OH-DPAT-reduced alternation ratio in the spontaneous alternation behavior test, although the effects were less pronounced than in the marble burying test. This suggests that the 5-HT2AR promotes exploratory behavior, but that the deficit produced by 8-OH-DPAT is too excessive to be fully reversed by 5-HT2AR agonists. This study shows that agonism of 5-HT2AR reduces repetitive behavioral patterns, supporting the theory that this is a potential new treatment approach to disorders of cognitive or behavioral inflexibility. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Lea Jessen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Ciarán M Fitzpatrick
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|