1
|
Zhang M, Morice AH. Current and emerging opioids for the treatment of chronic cough: a mini review. Expert Opin Pharmacother 2024. [PMID: 39434699 DOI: 10.1080/14656566.2024.2418983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Chronic cough has increasingly been recognized as a distinct clinical entity that affects a significant portion of the global population. Despite advancements in understanding its pathophysiology, treatment options remain limited. Opioid analgesics have long been used for cough and some have proven clear antitussive potential. However, these have yet to be approved by regulatory authorities for the treatment of chronic cough. Several novel synthetic opioid modulators that demonstrated antitussive effects in early-stage studies also failed to translate into clinical practice. AREAS COVERED This mini review aims to summarize the implications of opioid receptors in the development of cough medicines and highlight recent advances of opioid analgesics in cough trials. PUB MED/CINAHL/Web of Science/Scopus were searched (September 2024). EXPERT OPINION Our understanding of the precise sites of action and the involvement of peripheral opioid receptors in cough remains limited. Despite these gaps in knowledge, opioids remain a viable option for some patients until more novel effective treatments are available. Due to the frequent opioid side effects, new opioids derivatives with improved properties are needed. The development of tailored or biased delta-opioid receptor ligands and mixed agonists of opioid receptor-like 1/mu receptors may offer hope for new opioid-based drug discovery for chronic cough.
Collapse
Affiliation(s)
- Mengru Zhang
- Centre for Clinical Science, Respiratory Medicine, Hull York Medical School, University of Hull, Cottingham, UK
| | - Alyn H Morice
- Centre for Clinical Science, Respiratory Medicine, Hull York Medical School, University of Hull, Cottingham, UK
| |
Collapse
|
2
|
Iwai T, Mishima R, Hirayama S, Nakajima H, Oyama M, Watanabe S, Fujii H, Tanabe M. SYK-623, a δ Opioid Receptor Inverse Agonist, Mitigates Chronic Stress-Induced Behavioral Abnormalities and Disrupted Neurogenesis. J Clin Med 2024; 13:608. [PMID: 38276114 PMCID: PMC10817044 DOI: 10.3390/jcm13020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Rei Mishima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shigeto Hirayama
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Honoka Nakajima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Hideaki Fujii
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| |
Collapse
|
4
|
Discovery of Novel Delta Opioid Receptor (DOR) Inverse Agonist and Irreversible (Non-Competitive) Antagonists. Molecules 2021; 26:molecules26216693. [PMID: 34771099 PMCID: PMC8587863 DOI: 10.3390/molecules26216693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, were developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45128 as an inverse agonist. These compounds were then evaluated in vitro for their binding affinity by radioligand binding, their functional activity by 35S-GTPγS coupling, and their cAMP accumulation in cells expressing the human DOR. Both compounds demonstrated high binding affinity and selectivity at the DOR, and both displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45128). Together, these results demonstrate that we have successfully designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.
Collapse
|
6
|
Fujii H, Uchida Y, Shibasaki M, Nishida M, Yoshioka T, Kobayashi R, Honjo A, Itoh K, Yamada D, Hirayama S, Saitoh A. Discovery of δ opioid receptor full agonists lacking a basic nitrogen atom and their antidepressant-like effects. Bioorg Med Chem Lett 2020; 30:127176. [PMID: 32299730 DOI: 10.1016/j.bmcl.2020.127176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023]
Abstract
We have recently reported that the elaboration of the N-substituent in the δ opioid receptor (DOR) antagonist naltrindole (NTI) enabled the regulation of the DOR activities from full inverse agonists to weak partial agonists. The investigations of amide-type NTI derivatives revealed that N-phenylacetyl and N-dihydrocinnamoyl derivatives 3a and 3b were DOR full agonists. The same transformations were applied to a DOR agonist KNT-127 to provide the more potent DOR agonists 6a and 6b. Among the tested compounds, the most efficacious compound 6a showed dose-dependent antidepressant-like effects in the mouse forced swim test. The antidepressant-like effects by 6a seemed to be more potent than those of KNT-127, which is a more potent DOR agonist in in vitro assays. The amide-type compound like 6a may more fully penetrate into the central nervous system.
Collapse
Affiliation(s)
- Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Yota Uchida
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Marie Shibasaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Moeno Nishida
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Riho Kobayashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Ayaka Honjo
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Hirayama S, Fujii H. δ Opioid Receptor Inverse Agonists and their In Vivo Pharmacological Effects. Curr Top Med Chem 2020; 20:2889-2902. [PMID: 32238139 DOI: 10.2174/1568026620666200402115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
The discovery of δ opioid receptor inverse agonist activity induced by ICI-174,864, which was previously reported as an δ opioid receptor antagonist, opened the door for the investigation of inverse agonism/constitutive activity of the receptors. Various peptidic or non-peptidic δ opioid receptor inverse agonists have since been developed. Compared with the reports dealing with in vitro inverse agonist activities of novel compounds or known compounds as antagonists, there have been almost no publications describing the in vivo pharmacological effects induced by a δ opioid receptor inverse agonist. After the observation of anorectic effects with the δ opioid receptor antagonism was discussed in the early 2000s, the short-term memory improving effects and antitussive effects have been very recently reported as possible pharmacological effects induced by a δ opioid receptor inverse agonist. In this review, we will survey the developed δ opioid receptor inverse agonists and summarize the possible in vivo pharmacological effects by δ opioid receptor inverse agonists. Moreover, we will discuss important issues involved in the investigation of the in vivo pharmacological effects produced by a δ opioid receptor inverse agonist.
Collapse
Affiliation(s)
- Shigeto Hirayama
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|