1
|
Pospelov EV, Sukhorukov AY. Building Up a Piperazine Ring from a Primary Amino Group via Catalytic Reductive Cyclization of Dioximes. Int J Mol Sci 2023; 24:11794. [PMID: 37511552 PMCID: PMC10380651 DOI: 10.3390/ijms241411794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Piperazine is one of the most frequently found scaffolds in small-molecule FDA-approved drugs. In this study, a general approach to the synthesis of piperazines bearing substituents at carbon and nitrogen atoms utilizing primary amines and nitrosoalkenes as synthons was developed. The method relies on sequential double Michael addition of nitrosoalkenes to amines to give bis(oximinoalkyl)amines, followed by stereoselective catalytic reductive cyclization of the oxime groups. The method that we developed allows a straightforward structural modification of bioactive molecules (e.g., α-amino acids) by the conversion of a primary amino group into a piperazine ring.
Collapse
Affiliation(s)
- Evgeny V Pospelov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| |
Collapse
|
2
|
The influence of hapten spacer arm length on antibody response and immunoassay development. Anal Chim Acta 2023; 1239:340699. [PMID: 36628767 DOI: 10.1016/j.aca.2022.340699] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Antibodies against small molecules with high titer and high affinity are always pursued in the field of vaccines for drugs of abuse, antidotes to toxins and immunoassays in medical, environmental, and food safety. The exposure degree of the target molecule to the immune system is critical to induce a strongly specific antibody response, thus, the spacer arm length between the target molecule and carrier protein plays an important role. However, the influence of spacer arm length on antibody titer, affinity, and assay performance is not yet clear and highly demanded to be addressed. In the present study, we proposed a model study to answer the question by using two typical small molecules, melamine and p-nitroaniline, which were introduced by varied spacer arms with increasing alkane linear length from 2 to 12 carbon atoms brick by brick. The spacer arm lengths of the haptens were obtained by computational chemistry. The titer and affinity of mouse antisera were analyzed and compared, showing that all haptens with spacer arms of 6-8 carbon atoms, i.e. 6.3-8.8 Å in length, induced strong antibodies represented by the highest titer and affinity without exception, while the haptens with spacer arms of 2-4 carbon atoms and 10-12 carbon atoms, i.e. 1.5-3.9 Å and 11.3-13.9 Å in length, failed to induce high-quality antibody response. Moreover, the titer and sensitivity of the subsequently developed immunoassays were significantly affected by using coating haptens with different spacer arm lengths, and coating haptens with a spacer arm of 6.3-8.8 Å in length delivered the optimum detection performance. The antibody recognition mechanism study further confirmed that the hapten spacer arm length had a critical effect on the recognition properties of the induced antibody, which should be interactive with the spacer arm each other. This study showed that the hapten with appropriate spacer arm length is important to antibody response and immunoassay development, providing a valuable and general clue for the rational design of hapten.
Collapse
|
3
|
Bai Y, Fei J, Wu W, Dou L, Liu M, Shao S, Yu W, Wen K, Shen J, Wang Z. Minimum Distance Between Two Epitopes in Sandwich Immunoassays for Small Molecules. Anal Chem 2022; 94:17843-17852. [PMID: 36519948 DOI: 10.1021/acs.analchem.2c03592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pursuit of the limit between dimensionalities is a scientific goal with high applicability. Sandwich immunoassay, usually based on two antibodies binding two epitopes, is one of the most popular mainstay tools in both academic and industrial fields. Herein, we determined and evaluated the minimum distance of two epitopes in sandwich immunoassays for small molecules. Briefly, nine model analytes comprising two hapten epitopes, that is, melamine (MEL) and p-nitroaniline (NIA), were designed by increasing the linear chain linkers brick by brick. Two groups of monoclonal antibodies (mAbs) were produced with different recognition properties toward MEL and NIA using 12 new haptens with different spacer arms. The results indicated that two epitopes of the analyte with a distance of only 2.4 Å could be simultaneously bound by two mAbs, which is the known limit of epitope distance in sandwich immunoassays thus far. We further found that an epitope distance of below 8.8 Å for the analyte generally induces noticeable steric hindrance of antibodies, preventing a sandwich immunoassay with high probability. These observations were investigated and evaluated by molecular docking, molecular dynamics, and surface plasmon resonance and using model and real analytes. Altogether, we determined the minimum distance of two epitopes and explored the molecular mechanism of the antibody-analyte-antibody ternary complex in sandwich immunoassays, providing a theoretical basis for hapten design, antibody discovery and development, and sandwich immunoassay establishment for small molecules.
Collapse
Affiliation(s)
- Yuchen Bai
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.,Department of Nutrition and Food Hygiene, College of Public Health, Shanxi Medical University, 030001 Taiyuan, People's Republic of China
| | - Jie Fei
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Weilin Wu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Shibei Shao
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| |
Collapse
|
4
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
5
|
Zhao Y, Li Z, Zhu X, Cao Y, Chen X. Improving immunogenicity and safety of flagellin as vaccine carrier by high-density display on virus-like particle surface. Biomaterials 2020; 249:120030. [PMID: 32315864 DOI: 10.1016/j.biomaterials.2020.120030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
Flagellin is a protein-based adjuvant that activates toll-like receptor (TLR) 5. Flagellin has been actively explored as vaccine adjuvants and carriers. Preclinical and clinical studies find flagellin-based vaccines have a risk to induce systemic adverse reactions potentially due to its overt activation of TLR5. To improve safety and immunogenicity of flagellin as vaccine carriers, FljB was displayed at high densities on hepatitis b core (HBc) virus-like particle (VLP) surface upon c/e1 loop insertion. FljB-HBc (FH) VLPs showed significantly reduced ability to activate TLR5 or induce systemic interleukin-6 release as compared to FljB. FH VLPs also failed to significantly increase rectal temperature of mice, while FljB could significantly increase rectal temperature of mice. These data indicated systemic safety of FljB could be significantly improved by high-density display on HBc VLP surface. Besides improved safety, FH VLPs and FljB similarly boosted co-administered ovalbumin immunization and FH VLPs were found to induce two-fold higher anti-FljB antibody titer than FljB. These data indicated preserved adjuvant potency and improved immunogenicity after high-density display of FljB on HBc VLP surface. Consistent with the high immunogenicity, FH VLPs were found to be more efficiently taken up by bone marrow-derived dendritic cells and stimulate more potent dendritic cell maturation than FljB. Lastly, FH VLPs were found to be a more immunogenic carrier than FljB, HBc VLPs, or the widely used keyhole limpet hemocyanin for nicotine vaccine development with a good local and systemic safety. Our data support FH VLPs to be a potentially safer and more immunogenic carrier than FljB for vaccine development.
Collapse
Affiliation(s)
- Yiwen Zhao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zhuofan Li
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Xiaoyue Zhu
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Yan Cao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|