1
|
Chen P, Yang J, Jin Y, Lu C, Feng Z, Gao F, Chen Y, Wang F, Shang Z, Lin W. In vitro antifungal and antibiofilm activities of auranofin against itraconazole-resistant Aspergillus fumigatus. J Mycol Med 2023; 33:101381. [PMID: 37037064 DOI: 10.1016/j.mycmed.2023.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Infections caused by azole-resistant Aspergillus are a rising public health threat with high mortality rates, high treatment costs and limited available antifungals, indicating an urgent need for new antifungals or strategies. Our aim was to investigate antifungal and antibiofilm activities of auranofin, an FDA-approved anti-antirheumatic drug. METHODS Fungal susceptibility testing for auranofin was carried out by the broth-based microdilution methods. Cell viability treated by auranofin was tested by resazurin dye testing. The synergistic effect of auranofin and antifungal drugs was evaluated using checkboard assay. The inhibitory of biofilms were measured by crystal violet staining. Gene expression level analysis and enzyme activity was investigated with qRT-PCR analysis and DTNB assay. The key amino acid residues in the binding of auranofin with A. fumigatus thioredoxin reductase (AfTrxR) were indicated by structural analyses, site-directed mutagenesis, and microscale thermophoresis (MST) assays. RESULTS Auranofin has fungicidal activity and in vitro antifungal spectrum including Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger, even itraconazole (ITC)-resistant A. fumigatus. Additionally, it has antibiofilm activities against ITC-resistant A. fumigatus by reducing the expression level of SomA and MedA. Moreover, we discovered a synergistic effect of auranofin and ITC or amphotericin B against ITC-resistant A. fumigatus. Auranofin downregulated the gene transcription of AfTrxR, and strongly inhibited the enzyme activity of AfTrxR through interacting with residues C145 and C148. CONCLUSIONS Auranofin has fungicidal and antibiofilm activities in Aspergillus spp. and is also a potentiator of ITC or amphotericin B in vitro.
Collapse
|
2
|
da Silva FMR, Paggi GM, Brust FR, Macedo AJ, Silva DB. Metabolomic Strategies to Improve Chemical Information from OSMAC Studies of Endophytic Fungi. Metabolites 2023; 13:metabo13020236. [PMID: 36837855 PMCID: PMC9961420 DOI: 10.3390/metabo13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolomics strategies are important tools to get holistic chemical information from a system, but they are scarcely applied to endophytic fungi to understand their chemical profiles of biosynthesized metabolites. Here Penicillium sp. was cultured using One Strain Many Compounds (OSMAC) conditions as a model system to demonstrate how this strategy can help in understanding metabolic profiles and determining bioactive metabolites with the application of metabolomics and statistical analyses, as well as molecular networking. Penicillium sp. was fermented in different culture media and the crude extracts from mycelial biomass (CEm) and broth (CEb) were obtained, evaluated against bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa), and the metabolomic profiles by LC-DAD-MS were obtained and chemometrics statistical analyses were applied. The CEm and CEb extracts presented different chemical profiles and antibacterial activities; the highest activities observed were against S. aureus from CEm (MIC = 16, 64, and 128 µg/mL). The antibacterial properties from the extracts were impacted for culture media from which the strain was fermented. From the Volcano plot analysis, it was possible to determine statistically the most relevant features for the antibacterial activity, which were also confirmed from biplots of PCA as strong features for the bioactive extracts. These compounds included 75 (13-oxoverruculogen isomer), 78 (austalide P acid), 87 (austalide L or W), 88 (helvamide), 92 (viridicatumtoxin A), 96 (austalide P), 101 (dihydroaustalide K), 106 (austalide k), 110 (spirohexaline), and 112 (pre-viridicatumtoxin). Thus, these features included diketopiperazines, meroterpenoids, and polyketides, such as indole alkaloids, austalides, and viridicatumtoxin A, a rare tetracycline.
Collapse
Affiliation(s)
- Fernanda Motta Ribeiro da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Gecele Matos Paggi
- Laboratory of Ecology and Evolutionary Biology (LEBio), Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Flávia Roberta Brust
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandre José Macedo
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- Correspondence:
| |
Collapse
|
3
|
Li M, Chen Y, Wang L, Lu C, Chen P, Jin Y, Li J, Gao F, Shang Z, Lin W. Investigations into the antibacterial effects and potential mechanism of gambogic acid and neogambogic acid. Front Microbiol 2022; 13:1045291. [PMID: 36578570 PMCID: PMC9791066 DOI: 10.3389/fmicb.2022.1045291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The growing threat of antibiotic-resistant bacterial infections to public health necessitates the development of novel antibacterial agents. Inhibiting bacterial cell wall synthesis has remained a key focus for antibiotic development. Our search for inhibitors of undecaprenyl diphosphate synthase (UPPS), an essential enzyme required for bacterial cell wall formation, revealed that two primary components of gamboge, gambogic acid (GA) and neogambogic acid (NGA), significantly inhibited the activity of Enterococcus faecalis UPPS (EfaUPPS) with the half maximal inhibitory concentrations (IC50) of 3.08 μM and 3.07 μM, respectively. In the in vitro antibacterial assay, both GA and NGA also exhibited inhibitory activities against E. faecalis with the minimal inhibitory concentrations (MICs) of 2 μg/mL. Using microscale thermophoresis, molecular docking, and enzymatic assays, we further confirmed that GA and NGA occupy the substrate binding pocket of EfaUPPS with micro-molar binding affinity, preventing the natural substrates farnesyl diphosphate (FPP) from entering. Mutagenesis analysis revealed that L91 and L146 are two key residues in the binding between GA/NGA and UPPS. Furthermore, we also demonstrated that GA and NGA can improve E. faecalis-induced undesirable inflammation in a mouse infection model. Taken together, our findings provide a basis for structural optimization of GA/NGA to develop improved antibiotic leads and enhance treatment success rates in clinical practice.
Collapse
Affiliation(s)
- Mingzhu Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China,Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Chen
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Yuan Chen,
| | - Lijuan Wang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chujie Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiying Chen
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Shang
- School of Pharmaeutical Sciences, Shandong University, Jinan, China,Zhuo Shang,
| | - Wei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China,Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Nanjing, China,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Nanjing, China,Wei Lin,
| |
Collapse
|
4
|
Zhang W, Yao Y, Zhou H, He J, Wang J, Li L, Gao M, Liu X, Shi Y, Lin J, Liu J, Chen H, Feng Y, Zhou Z, Yu Y, Hua X. Interactions between host epithelial cells and Acinetobacter baumannii promote the emergence of highly antibiotic resistant and highly mucoid strains. Emerg Microbes Infect 2022; 11:2556-2569. [PMID: 36227610 PMCID: PMC9621264 DOI: 10.1080/22221751.2022.2136534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acinetobacter baumannii is an important nosocomial pathogen. Upon colonizing a host, A. baumannii are subjected to selective pressure by immune defenses as they adapt to the host environment. However, the mechanism of this pathoadaptation is unknown. Here, we established an in vitro system to evolve A. baumannii driven by the continuous selective pressure exerted by epithelial cells, and we used a combination of experimental evolution, phenotypic characterization and multi-omics analysis to address the underlying mechanism. When continuously exposed to selective pressure by pulmonary epithelial cells, A. baumannii showed ptk mutation-mediated mucoid conversion (reduced adhesion and increased anti-phagocytic ability) by enhancement of capsular exopolysaccharide chain length; rsmG mutation-mediated deficiency of 7-methylguanosine modification in the 524th nucleotide of 16S rRNA, which increased ribosome translation efficiency; and rnaseI mutation-mediated changes in outer membrane permeability and efflux pump expression. Together, these mutations altered susceptibility to a variety of antimicrobial agents, including the novel antibiotic cefiderocol, by regulating siderophore and siderophore-receptor biosynthesis. In conclusion, pulmonary epithelial cells modulate A. baumannii pathoadaptation, implicating the host–microbe interaction in the survival and persistence of A. baumannii.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yue Yao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Ya Shi
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, Zhejiang, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Chen
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, Zhejiang, China
| | - Yu Feng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Zhao H, Ji R, Zha X, Xu Z, Lin Y, Zhou S. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis. Eur J Pharm Sci 2022; 179:106299. [PMID: 36179970 DOI: 10.1016/j.ejps.2022.106299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022]
Abstract
There is an urgent need to find new antibiotics to fight against the increasing drug resistance of microorganisms. A novel natural compound, Penicilazaphilone C (PAC), was isolated from a marine-derived fungus. It has displayed broad bactericidal activities against Gram-negative and Gram-positive bacteria. However, its bactericidal mechanism is still unknown. Herein, time-kill assays verified that PAC is a fast and efficient bactericidal agent. Furthermore, data from 4D label-free quantitative proteome assays revealed that PAC significantly influences over 898 proteins in Escherichia coli. Combining the results of biofilm formation, β-galactosidase measurement, TEM observation, soft agar plate swimming, reactive oxygen species measurement, qRT-PCR, and west-blotting, the mode of PAC action against E. coli was to block respiration, inhibit assimilatory nitrate reduction and dissimilar sulfur reduction, facilitate assimilatory sulfate reduction, suppress cysteine and methionine biosynthesis, down-regulate antioxidant protein expression and induced intracellular ROS accumulation, weaken bacterial chemotaxis, destroy flagellar assembly, etc., and finally cause the bacteria's death. Our findings suggest that PAC could have a multi-target regulatory effect on E. coli and could be used as a new antibiotic in medicine.
Collapse
Affiliation(s)
- Huange Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease Control, Hainan Provincial Key Laboratory of Tropical Medicine, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199
| | - Rong Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease Control, Hainan Provincial Key Laboratory of Tropical Medicine, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199
| | - Xiangru Zha
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease Control, Hainan Provincial Key Laboratory of Tropical Medicine, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199
| | - Zhen Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease Control, Hainan Provincial Key Laboratory of Tropical Medicine, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199
| | - Yingying Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease Control, Hainan Provincial Key Laboratory of Tropical Medicine, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease Control, Hainan Provincial Key Laboratory of Tropical Medicine, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199.
| |
Collapse
|
6
|
Zhang L, Zhang X, Min J, Liu B, Huang JW, Yang Y, Liu W, Dai L, Yang Y, Chen CC, Guo RT. Structural insights to a bi-functional isoprenyl diphosphate synthase that can catalyze head-to-tail and head-to-middle condensation. Int J Biol Macromol 2022; 214:492-499. [PMID: 35764165 DOI: 10.1016/j.ijbiomac.2022.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Isoprenoids represent the largest group of natural products, whose basal skeletons are synthesized by various isoprenyl diphosphate synthases (IDSs). As majority of IDSs catalyze head-to-tail reaction to produce linear form isoprenoids, some catalyze head-to-middle reaction to produce branched form products. In a previous study, an IDS termed MA1831 from Methanosarcina acetivorans was found to be capable of catalyzing both types of reaction. In addition to the canonical linear product of C35 in length, MA1831 also catalyzes head-to-middle condensation of farnesyl diphosphate (FPP) and dimethylallyl diphosphate (DMAPP) to produce geranyllavandulyl diphosphate. In order to investigate the mechanism of action of MA1831, we determined its crystal structures in apo-form and in complex with substrates and analogues. The complex structures that contain isopentenyl S-thiolodiphosphate and DMAPP as homoallylic substrates were also reported, which should represent the reaction modes of MA1831-mediated head-to-tail and head-to-middle reaction, respectively. Based on the structural information, the mechanism of MA1831 catalyze head-to-tail and head-to-middle condensation reaction was proposed.
Collapse
Affiliation(s)
- Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xiaowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Beibei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yunyun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Newman DJ. Old and modern antibiotic structures with potential for today's infections. ADMET AND DMPK 2022; 10:131-146. [PMID: 35350115 PMCID: PMC8957243 DOI: 10.5599/admet.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the lack of new antibiotics with efficacy against the ESKAPE and other resistant microbes, coupled to the demise of major pharmaceutical company antibiotic discovery programs, due to a number of factors but mainly ROI calculations and the lack of efficacy of combinatorial chemistry as a substitute, the search for novel antibiotics may well have moved to the utilization of older structures with significant synthetic chemistry input. This short review demonstrates how modern synthetic chemistry, when applied to either modification of current resistant antibiotics such as glycopeptides, or production of novel peptidic agents based on natural product sourced antimicrobial peptides (AMPs) and other potential initial peptide-based agents from genomic searches and baiting techniques, have produced active agents of significant utility. In addition, synthetic chemistry practitioners have now shown that they can produce bioactive molecules of greater than 800 Daltons in kilogram quantities under cGMP conditions.
Collapse
|
8
|
Li H, Shu S, Kalaitzis JA, Shang Z, Vuong D, Crombie A, Lacey E, Piggott AM, Chooi YH. Genome Mining of Aspergillus hancockii Unearths Cryptic Polyketide Hancockinone A Featuring a Prenylated 6/6/6/5 Carbocyclic Skeleton. Org Lett 2021; 23:8789-8793. [PMID: 34747627 DOI: 10.1021/acs.orglett.1c03283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of a cryptic polyketide synthase gene cluster hkn from Aspergillus hancockii via overexpression of the gene-cluster-specific transcription factor HknR led to the discovery of a novel polycyclic metabolite, which we named hancockinone A. The compound features an unprecedented prenylated 6/6/6/5 tetracarbocyclic skeleton and shows moderate antibacterial activity. Heterologous expression, substrate feeding, and in vitro assays confirmed the role of cytochrome P450 HknE in constructing the five-membered ring in hancockinone A from the precursor neosartoricin B.
Collapse
Affiliation(s)
- Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Si Shu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - John A Kalaitzis
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Zhuo Shang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|