1
|
Kumar S, Sega S, Lynn-Barbe JK, Harris DL, Koehn JT, Crans DC, Crick DC. Proline Dehydrogenase and Pyrroline 5 Carboxylate Dehydrogenase from Mycobacterium tuberculosis: Evidence for Substrate Channeling. Pathogens 2023; 12:1171. [PMID: 37764979 PMCID: PMC10537722 DOI: 10.3390/pathogens12091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In Mycobacterium tuberculosis, proline dehydrogenase (PruB) and ∆1-pyrroline-5-carboxylate (P5C) dehydrogenase (PruA) are monofunctional enzymes that catalyze proline oxidation to glutamate via the intermediates P5C and L-glutamate-γ-semialdehyde. Both enzymes are essential for the replication of pathogenic M. tuberculosis. Highly active enzymes were expressed and purified using a Mycobacterium smegmatis expression system. The purified enzymes were characterized using natural substrates and chemically synthesized analogs. The structural requirements of the quinone electron acceptor were examined. PruB displayed activity with all tested lipoquinone analogs (naphthoquinone or benzoquinone). In PruB assays utilizing analogs of the native naphthoquinone [MK-9 (II-H2)] specificity constants Kcat/Km were an order of magnitude greater for the menaquinone analogs than the benzoquinone analogs. In addition, mycobacterial PruA was enzymatically characterized for the first time using exogenous chemically synthesized P5C. A Km value of 120 ± 0.015 µM was determined for P5C, while the Km value for NAD+ was shown to be 33 ± 4.3 µM. Furthermore, proline competitively inhibited PruA activity and coupled enzyme assays, suggesting that the recombinant purified monofunctional PruB and PruA enzymes of M. tuberculosis channel substrate likely increase metabolic flux and protect the bacterium from methylglyoxal toxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Steven Sega
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Jamie K. Lynn-Barbe
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Dannika L. Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Jordan T. Koehn
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA;
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523-1682, USA;
| | - Dean C. Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| |
Collapse
|
2
|
Abe T, Hakamata M, Nishiyama A, Tateishi Y, Matsumoto S, Hemmi H, Ueda D, Sato T. Identification and functional analysis of a new type of
Z,E
‐mixed prenyl reductase from mycobacteria. FEBS J 2022; 289:4981-4997. [DOI: 10.1111/febs.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Tohru Abe
- Department of Agriculture Faculty of Agriculture and Graduate School of Science and Technology Niigata University Japan
| | - Mariko Hakamata
- Department of Bacteriology Niigata University School of Medicine Japan
| | - Akihito Nishiyama
- Department of Bacteriology Niigata University School of Medicine Japan
| | | | | | - Hisashi Hemmi
- Department of Applied Molecular Bioscience Graduate School of Bioagricultural Sciences Nagoya University Japan
| | - Daijiro Ueda
- Department of Agriculture Faculty of Agriculture and Graduate School of Science and Technology Niigata University Japan
| | - Tsutomu Sato
- Department of Agriculture Faculty of Agriculture and Graduate School of Science and Technology Niigata University Japan
| |
Collapse
|
3
|
Abstract
A major problem with patient treatments using anticancer compounds is accompanying bacterial infections, which makes more information on how such compounds impact bacterial growth desirable. In the following study, we investigated the growth effects of an anticancerous non-toxic Schiff base oxidovanadium(V) complex (N-(salicylideneaminato)-N′-(2-hydroxyethyl)ethane-1,2-diamine) coordinated to the 3,5-di-tert-butylcatecholato ligand on a representative bacterium, Mycobacterium smegmatis (M. smeg). We prepared the Schiff base V-complexes as reported previously and selected a few complexes to develop a V-complex series. Biological studies of M. smeg growth inhibition were complemented by spectroscopic studies using UV-Vis spectrophotometry and NMR spectroscopy to determine which complexes were intact under biologically relevant conditions. We specifically chose to examine (1) the growth effects of Schiff base oxidovanadium complexes coordinated to a catechol, (2) the growth effects of respective free catecholates on M. smeg, and (3) to identify complexes where the metal coordination complex was more potent than the ligand alone under biological conditions. Results from these studies showed that the observed effects of Schiff base V-catecholate complex are a combination of catechol properties including toxicity, hydrophobicity, and sterics.
Collapse
|
4
|
Van Cleave C, Koehn JT, Pereira CS, Haase AA, Peters BJ, Croslow SW, McLaughlin KG, Werst KR, Goach AL, Crick DC, Arantes GM, Crans DC. Interactions of Truncated Menaquinones in Lipid Monolayers and Bilayers. Int J Mol Sci 2021; 22:9755. [PMID: 34575937 PMCID: PMC8470443 DOI: 10.3390/ijms22189755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022] Open
Abstract
Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization. In this manuscript, we used a combination of Langmuir monolayer studies and molecular dynamics (MD) simulations to probe these questions on truncated MK homologues, MK-1 through MK-4 within a model membrane. We observed that truncated MKs reside farther away from the interfacial water than ubiquinones are are located closer to the phospholipid tails. We also observed that phospholipid packing does not change at physiological pressure in the presence of truncated MKs, though a difference in phospholipid packing has been observed in the presence of ubiquinones. We found through MD simulations that for truncated MKs, the folded conformation varied, but MKs location and association with the bilayer remained unchanged at physiological conditions regardless of side chain length. Combined, this manuscript provides fundamental information, both experimental and computational, on the location, association, and conformation of truncated MK homologues in model membrane environments relevant to bacterial energy production.
Collapse
Affiliation(s)
- Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Jordan T. Koehn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Caroline Simões Pereira
- Department of Biochemistry, Institutio de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP, Brazil; (C.S.P.); (G.M.A.)
| | - Allison A. Haase
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Benjamin J. Peters
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Seth W. Croslow
- Department of Chemistry, Monmouth College, Monmouth, IL 61462, USA; (S.W.C.); (K.G.M.); (A.L.G.)
| | - Kyle G. McLaughlin
- Department of Chemistry, Monmouth College, Monmouth, IL 61462, USA; (S.W.C.); (K.G.M.); (A.L.G.)
| | - Katarina R. Werst
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Audra L. Goach
- Department of Chemistry, Monmouth College, Monmouth, IL 61462, USA; (S.W.C.); (K.G.M.); (A.L.G.)
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Guilherme Menegon Arantes
- Department of Biochemistry, Institutio de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP, Brazil; (C.S.P.); (G.M.A.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
5
|
Braasch-Turi M, Crans DC. Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. Molecules 2020; 25:molecules25194477. [PMID: 33003459 PMCID: PMC7582351 DOI: 10.3390/molecules25194477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.
Collapse
Affiliation(s)
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Ft. Collins, CO 80525, USA;
- Cell & Molecular Biology Program, Colorado State University, Ft. Collins, CO 80525, USA
- Correspondence:
| |
Collapse
|